Subscribe to RSS
DOI: 10.1055/s-0040-1706101
Synthesis of sp3-Enriched β-Fluoro Sulfonyl Chlorides
The work was funded by Enamine Ltd. Additional funding from the Ministry of Education and Science of Ukraine, Grant No. 19BF037-03 (A.V.D. and O.O.G.) is also acknowledged.
Abstract
A three-step approach to the synthesis of sp3-enriched β-fluoro sulfonyl chlorides starting from alkenes is reported. The method was successfully applied to a wide range of acyclic and cyclic substrates, bearing either an exocyclic or an endocyclic double bond. The procedure worked with a wide range of substrates and tolerated a number of functional and protecting groups. Moreover, the target cyclic compounds were obtained as single cis diastereomers on a multigram scale. The title compounds are promising building blocks for drug discovery that can be used to obtain sp3-enriched β-fluoro and α,β-unsaturated sulfonamides.
Key words
organosulfur compounds - organofluorine compounds - oxidation - sulfonyl chlorides - building blocksSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1706101.
- Supporting Information
Publication History
Received: 29 October 2020
Accepted after revision: 13 November 2020
Article published online:
15 December 2020
© 2020. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a The Amide Linkage: Structural Significance in Chemistry, Biochemistry, and Materials Science. Greenberg A, Breneman CM, Liebman JF. John Wiley & Sons, Inc; New York: 2000
- 1b Brameld KA, Kuhn B, Reuter DC, Stahl M. J. Chem. Inf. Model. 2008; 48: 1
- 2 Koeplinger KA, Zhao Z, Peterson T, Leone JW, Schwende FS, Heinrikson RL, Tomasselli AG. Drug Metab. Dispos. 1999; 27: 986
- 3a Ajeet, Mishra AK, Kumar A. Am. J. Pharmacol. Sci. 2015; 3: 18
- 3b The First Miracle Drugs: How the Sulfa Drugs Transformed Medicine. Lesch JE. Oxford University Press; New York: 2007
- 3c Domagk G. Dtsch. Med. Wochenschr. 1935; 61: 250
- 3d Drews J. Science 2000; 287: 1960
- 3e Scozzafava A, Owa T, Mastrolorenzo A, Supuran CT. Curr. Med. Chem. 2003; 10: 925
- 4 Raju TN. K. Lancet 1999; 353: 681
-
5 DrugBank (accessed Jan 3 2020). www.drugbank.ca.
- 6a Tolmachova KA, Moroz YS, Konovets A, Platonov MO, Vasylchenko OV, Borysko P, Zozulya S, Gryniukova A, Bogolubsky AV, Pipko S, Mykhailiuk PK, Brovarets VS, Grygorenko OO. ACS Comb. Sci. 2018; 20: 672
- 6b Mykhalchuk VL, Yarmolchuk VS, Doroschuk RO, Tolmachev AA, Grygorenko OO. Eur. J. Org. Chem. 2018; 2870
- 6c Sokolov A, Golovach S, Kozlinsky I, Dolia K, Tolmachev AA, Kuchkovska Y, Grygorenko OO. Synthesis 2019; 51: 848
- 6d Cherepakha AYu, Stepannikova KO, Vashchenko BV, Gorichko MV, Tolmachev AA, Grygorenko OO. Eur. J. Org. Chem. 2018; 6682
- 6e Yang Z, Zhou B, Xu J. Synthesis 2014; 46: 225
- 6f Yang Z, Zheng Y, Xu J. Synlett 2013; 24: 2165
- 6g Yang Z, Xu J. Synthesis 2013; 45: 1675
- 7a Wolkenberg SE, Zhao Z, Wisnoski DD, Leister WH, O’Brien J, Lemaire W, Williams DL, Jacobson MA, Sur C, Kinney GG, Pettibone DJ, Tiller PR, Smith S, Gibson C, Ma BK, Polsky-Fisher SL, Lindsley CW, Hartman GD. Bioorg. Med. Chem. Lett. 2009; 19: 1492
- 7b Melngaile R, Sperga A, Baldridge KK, Veliks J. Org. Lett. 2019; 21: 7174
- 8a Saunders BC, Stacey GJ, Wilding IG. E. J. Chem. Soc. 1949; 773
- 8b Howell WC, Millington JE, Pattison FL. M. J. Am. Chem. Soc. 1956; 78: 3843
- 8c Bunyagidj C, Piotrowska H, Aldridge MH. J. Chem. Eng. Data 1981; 26: 344
-
9a
Wang L,
Pratt JK,
McDaniel KF,
Dai Y,
Fidanze SD,
Hasvold L,
Holms JH,
Kati WM,
Liu D,
Mantei RA,
McClellan WJ,
Sheppard GS,
Wada CK.
US 2014162971, 2014
-
9b
Mao Z,
Ma D,
Ge Y,
Ren X,
Li Y.
CN 105622469, 2016
-
9c
Dai W,
Xi N,
Li M,
Zhang T,
Li X,
Hu H,
Chen W,
Wang T,
Liu J.
WO 201748675, 2017
-
9d
Braun M.-G,
Gibbons P,
Lee W,
Ly C,
Rudolph J,
Schwarz J,
Ashkenazi A,
Fu L,
Lai T,
Wang F,
Beveridge R,
Zhao L.
WO 2018166528, 2018
- 10a Liu S, Zeng X, Xu B. Org. Chem. Front. 2019; 7: 119
- 10b Haufe G, Alvernhe G, Anker D, Laurent A, Saluzzo C. Tetrahedron Lett. 1988; 29: 2311
- 11a Lübke M, Skupin R, Haufe G. J. Fluorine Chem. 2000; 102: 125
- 11b Moens M, D’Hooghe M, De Kimpe N. Tetrahedron Lett. 2013; 54: 6110
- 11c Verniest G, Piron K, Van Hende E, Thuring JW, MacDonald G, Deroose F, De Kimpe N. Org. Biomol. Chem. 2010; 8: 2509
- 11d Camps F, Chamorro E, Gasol V, Guerrero A. J. Org. Chem. 1989; 54: 4294
- 11e Hashimoto T, Prakash GK. S, Shih JG, Olah GA. J. Org. Chem. 1987; 52: 931
- 11f Shimizu M, Nakahara Y, Yoshioka H. J. Chem. Soc., Chem. Commun. 1989; 1881
- 11g Olah GA, Bollinger JM. J. Am. Chem. Soc. 1967; 89: 4744
- 11h Olah GA, Li X.-Y, Wang Q, Prakash GK. S. Synthesis 1993; 693
- 11i Alvernhe G, Laurent A, Haufe G. Synthesis 1987; 562
- 12 Cope AC, Martin MM, McKervey MA. Q. Rev., Chem. Soc. 1966; 20: 119
- 13 Nadin A, Hattotuwagama C, Churcher I. Angew. Chem. Int. Ed. 2012; 51: 1114
- 14 Armarego WL. F, Chai C. Purification of Laboratory Chemicals, 5th ed. Elsevier; Oxford: 2003
- 15 Schmid GH, Strukelj M, Dalipi S, Ryan MD. J. Org. Chem. 1987; 52: 2403
- 16a Kim J, Zhang Y, Ran C, Sayre LM. Bioorg. Med. Chem. 2006; 14: 1444
- 16b Delogu G, Faedda G, Gladiali S. J. Organomet. Chem. 1984; 268: 167
- 16c Stille JK, Becker Y. J. Org. Chem. 1980; 45: 2139
- 17a Thumme RP, Nutaku W. J. Org. Chem. 1978; 43: 3170
- 17b Conner ML, Brown MK. J. Org. Chem. 2016; 81: 8050
- 17c Olah GA, Reddy VP, Surya Prakash GK. Synthesis 1991; 29
- 17d Green SA, Vásquez-Céspedes S, Shenvi RA. J. Am. Chem. Soc. 2018; 140: 11317
- 17e Liu X, Zhang W, Wang Y, Zhang ZX, Jiao L, Liu Q. J. Am. Chem. Soc. 2018; 140: 6873
- 17f Matos JL. M, Vásquez-Céspedes S, Gu J, Oguma T, Shenvi RA. J. Am. Chem. Soc. 2018; 140: 16976