Subscribe to RSS
DOI: 10.1055/s-0040-1706282
Simple Synthesis of Complex Amines from the Diels–Alder Adducts of (–)-Cytisine
This work was supported by Life Chemicals Inc.
Abstract
The Diels–Alder reaction of N-benzylcytisine with N-methyl- and N-benzylmaleimides is 100% endo-selective and gives the corresponding syn- and anti-diastereomers in 11–42% isolated yields. The studies of the reaction progress with LCMS and NMR along with detailed quantum chemical calculations revealed that some Diels–Alder adducts are kinetically and their isomers are thermodynamically controlled products. The Pd/C-catalyzed hydrogenation of benzyl-protected cytisine amine derivatives resulted in the removal of the benzyl group and the addition of hydrogen to the C=C double bond to give the corresponding secondary amines in 45–84% yield. The complete reduction of carbonyl groups in a cytisine derivative with LiAlH4 in THF under reflux afforded the respective tricyclic triamine. Quantum mechanical calculations for the mechanism of the Diels–Alder reaction between the simplest model compounds are presented.
Key words
cytisine - maleimides - Diels–Alder reaction - diastereoselectivity - hydrogenation - LiAlH4 reduction - quantum chemical calculationsSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1706282.
- Supporting Information
Publication History
Received: 13 April 2021
Accepted after revision: 02 July 2021
Article published online:
16 August 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Blom AE. M, Rego Campello H, Lester HA, Gallagher T, Dougherty DA. J. Am. Chem. Soc. 2019; 141: 15840
- 1b Butler MS, Robertson AA. B, Cooper MA. Nat. Prod. Rep. 2014; 31: 1612
- 1c Philipova I, Stavrakov G, Vassilev N, Nikolova R, Shivachev B, Dimitrov V. J. Organomet. Chem. 2015; 778: 10
- 2a Etter J.-F. Arc. Intern. Med. 2006; 166: 1553
- 2b West R, Zatonski W, Cedzynska M, Lewandowska D, Pazik J, Aveyard P, Stapleton J. N. Engl. J. Med. 2011; 365: 1193
- 3 Rouden J, Lasne M.-C, Blanchet J, Baudoux J. Chem. Rev. 2013; 113: 712
- 4a Sakhautdinov IM, Mukhamet’yanova AF, Dosniyazova AG, Vinogradova VI, Lobov AN, Yunusov MS. Chem. Nat. Comp. 2019; 55: 398
- 4b Liu C, Watt DS, Frasinyuk MS, Sviripa VM, Zhang W, Bondarenko SP. US 20180344862 A1, 2018
- 4c Przybyl AK, Maj E, Wietrzyk J, Kubicki M. J. Mol. Struct. 2019; 1176: 871
- 5 Lator A, Gaillard QG, Merel DS, Lohier J.-F, Gaillard S, Poater A, Renaud J.-L. J. Org. Chem. 2019; 84: 6813
- 6 Tsypysheva I, Petrova P, Koval’skaya A, Lobov A, Sapozhnikova T, Makara N, Gabdrakhmanova S, Zarudii F. Nat. Prod. Res. 2021; 35: 207
- 7 Marrière E, Rouden J, Tadino V, Lasne M.-C. Org. Lett. 2000; 2: 1121
- 8 Gallagher TC, Rego Campello H. PCT Int. Appl WO 2018033742 A2, 2018
- 9a Tsypysheva IP, Lobov AN, Kovalskaya AV, Vinogradova VI, Suponitsky KY, Khursan SL, Yunusov MS. Tetrahedron: Asymmetry 2013; 24: 1318
- 9b Tsypysheva IP, Lobov AN, Kovalskaya AV, Petrova PR, Ivanov SP, Rameev SA, Yunusov MS. Nat. Prod. Res. 2014; 29: 141
- 9c Tsypysheva IP, Borisevich SS, Lobov AN, Kovalskaya AV, Shamukaev VV, Safiullin RL, Khursan SL. Tetrahedron: Asymmetry 2015; 26: 732
- 9d Tsypysheva I, Koval’skaya A, Petrova P, Lobov A, Borisevich S, Tsypyshev D, Fedorova V, Gorbunova E, Galochkina A, Zarubaev V. Tetrahedron 2019; 75: 2933
- 10 Freer AA, Robins DJ, Sheldrick GM. Acta Crystallogr., Ser. C 1987; 43: 1119
- 11 This result is consistent with the stability trend reported earlier for the Diels–Alder reaction of N-phenylmaleimide with 2a: Borisevich SS, Kovalskaya AV, Tsypysheva IP, Khursan SL. J. Theor. Comput. Chem. 2014; 13: 1450048
- 12 de Oliveira JC, Laborie M.-P, Roucoules V. Molecules 2020; 25: 243
- 13 Kornilov DA, Kiselev VD, Anikin OV, Kolesnikova AO, Shulyat’ev AA. Russ. J. Org. Chem. 2019; 55: 7
- 14 Black K, Liu P, Xu L, Doubleday C, Houk KN. Proc. Natl. Acad. Sci. U. S. A. 2012; 109: 12860
- 15 Honda Е, Takahashi R, Namiki H. J. Org. Chem. 2005; 70: 499
- 16a Sheldrick GM. Acta Crystallogr., Sect. A. 2008; 64: 112
- 16b CCDC 1967962–1967968 contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
- 17 Møller C, Plesset MS. Phys. Rev. 1934; 46: 618
- 18a Pople JA, Head-Gordon M, Raghavachari K. J. Chem. Phys. 1987; 87: 5968
- 18b Raghavachari K, Trucks GW, Pople JA, Head-Gordon M. Chem. Phys. Lett. 1989; 157: 479
- 19 Goumans TP. M, Ehlers AW, Lammertsma K, Würthwein E.-U, Grimme S. Chem. Eur. J. 2004; 10: 6468
- 20 Grimme S. J. Chem. Phys. 2003; 118: 9095
- 21a Riplinger C, Neese F. J. Chem. Phys. 2013; 138: 034106
- 21b Riplinger C, Sandhoefer B, Hansen A, Neese F. J. Chem. Phys. 2013; 139: 134101
- 21c Riplinger C, Pinski P, Becker U, Valeev EF, Neese F. J. Chem. Phys. 2016; 144: 024109
- 22 Liakos DG, Sparta M, Kesharwani MK, Martin JM, Neese F. J. Chem. Theory Comput. 2015; 11: 1525
- 23a Neese F. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012; 2: 73
- 23b Neese F. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2018; 8: e1327
- 24a Hariharan PC, Pople JA. Theor. Chim. Acta 1973; 28: 213
- 24b Hehre WJ, Ditchfield R, Pople JA. J. Chem. Phys. 1972; 56: 2257
- 25a Dunning TH. Jr. J. Chem. Phys. 1989; 90: 1007
- 25b Kendall RA, Dunning TH. Jr, Harrison RJ. J. Chem. Phys. 1992; 96: 6796
- 26 Stoychev GL, Auer AA, Neese F. J. Chem. Theory Comput. 2017; 13: 554
- 27 Weigend F, Köhn A, Hättig C. J. Chem. Phys. 2002; 116: 3175