Subscribe to RSS
DOI: 10.1055/s-0040-1706413
Chiral Brønsted Acids Catalyze Asymmetric Additions to Substrates that Are Already Protonated: Highly Enantioselective Disulfonimide-Catalyzed Hantzsch Ester Reductions of NH–Imine Hydrochloride Salts
Generous support from the Max-Planck-Gesellschaft, the Deutsche Forschungsgemeinschaft (Leibniz Award to B.L. and Cluster of Excellence RESOLV, Grant No. EXC 1069), and the European Research Council (Advanced Grant ‘C–H Acids for Organic Synthesis, CHAOS’) are gratefully acknowledged. C.O. also acknowledges Alexander von Humboldt Foundation and Bayer Science & Education Foundation for the Humboldt-Bayer Fellowship for Postdoctoral Researchers.
Publication History
Received: 19 June 2020
Accepted after revision: 13 July 2020
Publication Date:
14 August 2020 (online)
Abstract
While imines are frequently used substrates in asymmetric Brønsted acid catalysis, their corresponding salts are generally considered unsuitable reaction partners. Such processes are challenging because they require the successful competition of a catalytic amount of a chiral anion with a stoichiometric amount of an achiral one. We now show that enantiopure disulfonimides enable the asymmetric reduction of N–H imine hydrochloride salts using Hantzsch esters as hydrogen source. Our scalable reaction delivers crystalline primary amine salts in great efficiency and enantioselectivity and the discovery suggests potential of this approach in other Brønsted acid catalyzed transformations of achiral iminium salts. Kinetic studies and acidity data suggest a bifunctional catalytic activation mode.
Key words
Brønsted acids - N–H imine hydrochloride salt - primary amine - disulfonimide (DSI) - organocatalytic reductionSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1706413.
- Supporting Information
-
References and Notes
- 1a Terada M. Chem. Commun. 2008; 4097
- 1b Kampen D, Reisinger CM, List B. Top. Curr. Chem. 2010; 291: 395
- 1c Terada M. Synthesis 2010; 1929
- 1d Akiyama T. In Science of Synthesis: Asymmetric Organocatalysis, Vol. 2 . Maruoka K. Thieme; Stuttgart: 2012: 169
- 1e Akiyama T, Mori K. Chem. Rev. 2015; 115: 9277
- 2 Nugent TC. In Chiral Amine Synthesis: Methods, Developments and Applications . Nugent TC. Wiley-VCH; Weinheim: 2010
- 3a Nugent TC, El-Shazly M. Adv. Synth. Catal. 2010; 352: 753
- 3b Fleury-Bregeot N, de la Fuente V, Castillon S, Claver C. ChemCatChem 2010; 2: 1346
- 3c Xie J.-H, Zhu S.-F, Zhou Q.-L. Chem. Rev. 2011; 111: 1713
- 3d Wang C, Xiao J. Top. Curr. Chem. 2014; 343: 261
- 3e Tang W, Xiao J. Synthesis 2014; 46: 1297
- 3f Morisaki K, Morimoto H, Ohshima T. ACS Catal. 2020; 10: 6924
- 3g Gallardo-Donaire J, Hermsen M, Wysocki J, Ernst M, Rominger F, Trapp O, Hashmi AS. K, Schaefer A, Comba P, Schaub T. J. Am. Chem. Soc. 2018; 140: 355
- 3h Tan X, Gao S, Zeng W, Xin S, Yin Q, Zhang X. J. Am. Chem. Soc. 2018; 140: 2024
- 4a Hoffmann S, Seayad AM, List B. Angew. Chem. Int. Ed. 2005; 44: 7424
- 4b Wakchaure VN, Nicoletti M, Ratjen L, List B. Synlett 2010; 2708
- 4c Wakchaure VN, Kaib PS. J, Leutzsch M, List B. Angew. Chem. Int. Ed. 2015; 54: 11852
- 5a Storer RI, Carrera DE, Ni Y, MacMillan DW. C. J. Am. Chem. Soc. 2006; 128: 84
- 5b Wakchaure VN, Zhou J, Hoffmann S, List B. Angew. Chem. Int. Ed. 2010; 49: 4612
- 5c Hoffmann S, Nicoletti M, List B. J. Am. Chem. Soc. 2006; 128: 13074
- 5d Li G, Liang Y, Antilla JC. J. Am. Chem. Soc. 2007; 129: 5830
- 5e Kang Q, Zhao Z.-A, You S.-L. Adv. Synth. Catal. 2007; 349: 1657
- 5f Mazuela J, Antonsson T, Johansson MJ, Knerr L, Marsden SP. Org. Lett. 2017; 19: 5541
- 5g You S.-L. Chem. Asian J. 2007; 2: 820
- 5h Connon SJ. Org. Biomol. Chem. 2007; 5: 3407
- 5i Ouellet SG, Walji AM, Macmillan DW. C. Acc. Chem. Res. 2007; 40: 1327
- 5j Wang C, Wu X, Zhou L, Sun J. Chem. Eur. J. 2008; 14: 8789
- 5k de Vries JG, Mrsic N. Catal. Sci. Technol. 2011; 1: 727
- 5l Zheng C, You S.-L. Chem. Soc. Rev. 2012; 41: 2498
- 5m Herrera RP. Top. Curr. Chem. 2016; 374: 1
- 5n Faisca Phillips AM, Pombeiro AJ. L. Org. Biomol. Chem. 2017; 15: 2307
- 5o Li G, Antilla JC. Org. Lett. 2009; 11: 1075
- 5p Zhu C, Saito K, Yamanaka M, Akiyama T. Acc. Chem. Res. 2015; 48: 388
- 5q Shibata Y, Yamanaka M. J. Org. Chem. 2013; 78: 3731
- 6a Malkov AV, Stončius S, MacDougall KN, Mariani A, McGeoch GD, Kočovský P. Tetrahedron 2006; 62: 264
- 6b Pei D, Zhang Y, Wei S, Wang M, Sun J. Adv. Synth. Catal. 2008; 350: 619
- 6c Guizzetti S, Benaglia M, Celentano G. Eur. J. Org. Chem. 2009; 3683
- 6d Gautier F.-M, Jones S, Li X, Martin SJ. Org. Biomol. Chem. 2011; 9: 7860
- 6e Hu X.-Y, Zhang M.-M, Shu C, Zhang Y.-H, Liao L.-H, Yuan W.-C, Zhang X.-M. Adv. Synth. Catal. 2014; 356: 3539
- 6f Wang C, Wu X, Zhou L, Sun J. Org. Biomol. Chem. 2015; 13: 577
- 6g Chelouan A, Recio R, Borrego LG, Alvarez E, Khiar N, Fernandez I. Org. Lett. 2016; 18: 3258
- 6h Zhang Z, Rooshenas P, Hausmann H, Schreiner PR. Synthesis 2009; 1531
- 6i Li X, Reeder AT, Torri F, Adams H, Jones S. Org. Biomol. Chem. 2017; 15: 2422
- 7 For asymmetric imine reductions using catecholborane, see: Enders D, Rembiak A, Seppelt M. Tetrahedron Lett. 2013; 54: 470
- 8a Zhao Q, Wen J, Tan R, Huang K, Metola P, Wang R, Anslyn EV, Zhang X. Angew. Chem. Int. Ed. 2014; 53: 8467
- 8b Hou G, Tao R, Sun Y, Zhang X, Gosselin F. J. Am. Chem. Soc. 2010; 132: 2124
- 8c Hou G, Gosselin F, Li W, McWilliams JC, Sun Y, Weisel M, O'Shea PD, Chen C.-y, Davies IW, Zhang X. J. Am. Chem. Soc. 2009; 131: 9882
- 8d Hou G, Li W, Ma M, Zhang X, Zhang X. J. Am. Chem. Soc. 2010; 132: 12844
- 9a Nguyen TB, Bousserouel H, Wang Q, Gueritte F. Org. Lett. 2010; 12: 4705
- 9b Nguyen TB, Wang Q, Gueritte F. Chem. Eur. J. 2011; 17: 9576
- 9c Gosselin F, O'Shea PD, Roy S, Reamer RA, Chen C.-Y, Volante RP. Org. Lett. 2005; 7: 355
- 9d Ye J, Wang C, Chen L, Wu X, Zhou L, Sun J. Adv. Synth. Catal. 2016; 358: 1042
- 9e Sawa M, Morisaki K, Kondo Y, Morimoto H, Ohshima T. Chem. Eur. J. 2017; 23: 17022
- 9f Yonesaki R, Kondo Y, Akkad W, Sawa M, Morisaki K, Morimoto H, Ohshima T. Chem. Eur. J. 2018; 24: 15211
- 9g Miyagawa M, Yoshida M, Kiyota Y, Akiyama T. Chem. Eur. J. 2019; 25: 5677
- 9h Jang H, Romiti F, Torker S, Hoveyda AH. Nat. Chem. 2017; 1269
- 10 Wakchaure VN, List B. Angew. Chem. Int. Ed. 2016; 55: 15775
- 11 Brak K, Jacobsen EN. Angew. Chem. Int. Ed. 2013; 52: 534
- 12a Mahlau M, List B. Isr. J. Chem. 2012; 52: 630
- 12b Mahlau M, List B. Angew. Chem. Int. Ed. 2013; 52: 518
- 13 For a theoretical study on N–H imine reduction using phosphoric acid and Hantzsch ester, see: Reid JP, Goodman JM. Org. Biomol. Chem. 2017; 15: 6943
- 14a van Gemmeren M, Lay F, List B. Aldrichimica Acta 2014; 47: 3
- 14b James T, van Gemmeren M, List B. Chem. Rev. 2015; 115: 9388
- 14c Garcia-Garcia P, Lay F, Garcia-Garcia P, Rabalakos C, List B. Angew. Chem. Int. Ed. 2009; 48: 4363
- 14d Ratjen L, Garcia-Garcia P, Lay F, Beck ME, List B. Angew. Chem. Int. Ed. 2011; 50: 754
- 14e Guin J, Rabalakos C, List B. Angew. Chem. Int. Ed. 2012; 51: 8859
- 14f Mahlau M, Garcia-Garcia P, List B. Chem. Eur. J. 2012; 18: 16283
- 14g Gandhi S, List B. Angew. Chem. Int. Ed. 2013; 52: 2573
- 14h Wang Q, Leutzsch M, van Gemmeren M, List B. J. Am. Chem. Soc. 2013; 135: 15334
- 14i Wang Q, van Gemmeren M, List B. Angew. Chem. Int. Ed. 2014; 53: 13592
- 14j Prevost S, Dupre N, Leutzsch M, Wang Q, Wakchaure V, List B. Angew. Chem. Int. Ed. 2014; 53: 8770
- 14k Guin J, Wang Q, van Gemmeren M, List B. Angew. Chem. Int. Ed. 2015; 54: 355
- 14l Wang Q, List B. Synlett 2015; 26: 1525
- 14m Wang Q, List B. Synlett 2015; 26: 807
- 14n Tap A, Blond A, Wakchaure VN, List B. Angew. Chem. Int. Ed. 2016; 55: 8962
- 14o Höfler D, Goddard R, Nöthling N, List B. Synlett 2019; 30: 433
- 14p Zhang Z, Klussmann M, List B. Synlett 2020; 31 in press;
- 15 General Procedure for the Asymmetric Reduction of N–H Imine Hydrochloride Salts An oven-dried 10 mL vial was charged with the hydrochloride salt of imine 1 (0.25 mmol), Hantzsch ester 2 (108.3 mg, 0.35 mmol, 1.4 equiv), disulfonimide DSI-3c, freshly activated MS 5Å (250 mg), and a magnetic stirring bar at RT. Then 7.5 mL (0.033 M) of MTBE–MeCy (MTBE–CHCl3 in case of 1l) was added under an argon atmosphere. The mixture was then subjected to the appropriate reaction time and temperature. The reaction mixture was filtered over Celite, washed with isohexane (40 mL), and isohexane–MTBE (1:1, 40 mL) to remove the neutral compounds. The hydrochloride salt of the desired amine product 4 was then collected in >99% purity (by 1H NMR analysis) by washing with 3% MeOH in CH2Cl2 (60 mL) and evaporating the filtrate under reduced pressure. The enantiomeric ratio of products 4 was determined by HPLC after benzoylation following a standard procedure. Crude enantiomeric ratios were determined after subjecting the reaction mixture with sat. NaHCO3 solution, extracting the free amine product with MTBE, followed by benzoylation and HPLC analysis. (S)-1-[4-(tert-Butyl)phenyl]ethan-1-aminium Chloride (4b) Prepared according to the general procedure using DSI-3c (7.98 mg, 2.0 mol%, 0.02 equiv) in MTBE–MeCy (1:1) at RT for 24 h and obtained as colorless solid (43.25 mg, 81%, e.r. = 99.5:0.5, crude reaction e.r. = 99.5:0.5). 1H NMR (500 MHz, CDCl3): δ = 8.58 (br s, 3 H), 7.46–7.27 (m, 4 H), 4.30–4.20 (m, 1 H), 1.55 (d, J = 6.8 Hz, 3 H), 1.21 (s, 9 H). 13C NMR (126 MHz, CDCl3): δ = 151.8, 135.4, 126.8, 126.0, 51.5, 34.7, 31.4, 20.8. HRMS (ESI): m/z calcd for C12H20N [M – Cl]+: 178.159060; found: 178.159024. The enantiomeric ratio was determined by derivatization to the corresponding benzamide by HPLC analysis using Daicel Chiralpak OD-3, n-heptane–IPA = 80:20, flow rate = 1.0 mL/min, 25 °C, λ = 220 nm, t R = 3.13 min (minor) and t R = 4.60 min (major). [α]D 25 –16.0° (c 0.63, CH2Cl2).
- 16 Additionally, when imine salt 1a was dissolved in CHCl3 and filtered through an HPLC filter to ensure complete absence of insoluble salt, reduction under completely homogeneous conditions proceeded efficiently and with high enantioselectivity (e.r. = 93:7).
- 17a Nelson HM, Patel JS, Shunatona HP, Toste FD. Chem. Sci. 2015; 6. 170
- 17b Phipps RJ, Hamilton GL, Toste FD. Nat. Chem. 2012; 4: 603
- 18 See the Supporting Information for NMR studies on the speciation of the catalyst with the substrates and the products under the reaction conditions.
For selected reviews, see:
For selected recent reviews on asymmetric reduction of imines and reductive amination of ketones, see:
For selected recent examples of TM-catalyzed asymmetric reductive amination of ketones, see:
For selected examples of other organocatalytic asymmetric imine reductions and reductive aminations, see:
For selected examples of organocatalytic asymmetric reductive amination of aldehydes and α-branched ketones via dynamic kinetic resolution, see:
For selected examples of organocatalytic asymmetric α-imino ester reductions, see:
For reviews, see:
For organocatalytic asymmetric enamide reductions, see:
For organocatalytic asymmetric enamide reductions, see:
For selected recent examples on Lewis base catalyzed asymmetric imine reductions and reductive aminations using silanes, see:
For structural and mechanistic studies, see:
For metal-catalyzed N–H imine hydrochloride salt reduction, see:
For metal-catalyzed unprotected β-enamino esters reduction, see:
For organocatalytic ortho-hydroxyaryl alkyl and ortho-hydroxybenzophenone N–H imine reduction, see:
For enantioselective reduction of aryl trifluoromethylated N–H imine with borane-chiral oxazaborolidine, see:
For a Lewis base catalyzed asymmetric reduction of unprotected β-enamino esters with trichlorosilane, see:
For the nucleophilic reaction to CF3NH ketimines catalyzed by Brønsted acid, see:
For an example of using of N–H imine hydrochloride salts as in situ imine precursor in catalytic asymmetric additions, see:
For reviews, see:
For reviews, see: