Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2020; 31(18): 1813-1816
DOI: 10.1055/s-0040-1706470
DOI: 10.1055/s-0040-1706470
letter
Synthesis of 2-Arylbenzothiazol-5-amines from N,N-Dialkyl-3-nitroanilines
The Vietnam National University – Ho Chi Minh City (VNU-HCM) is acknowledged for financial support through project No. NCM2019-20-01.
Abstract
We report a simple method for coupling of N,N-dialkyl-3-nitroarenes, elemental sulfur, and activated sp3 C–H bonds in 2-methylazaarenes or arylacetic acids to afford derivatives of 2-arylbenzothiazol-5-amines. Only DABCO base was required, and many heterocycles such as imidazoles, oxazoles, quinolines, and thiophenes were compatible with the reaction conditions. Our approach offers a simple route to useful substituted thiazol-5-amines from commercially available nitroarenes.
Key words
-
dialkylnitroanilines -
sulfur -
benzothiazolamines -
heterocycles -
multicomponent reaction
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1706470.
- Supporting Information
Publication History
Received: 14 July 2020
Accepted after revision: 14 August 2020
Article published online:
09 September 2020
© 2020. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Ono N. The Nitro Group in Organic Synthesis . Wiley-VCH; New York: 2001
- 1b Mąkosza M, Wojciechowski K. Chem. Rev. 2004; 104: 2631
- 2a Gui J, Pan C.-M, Jin Y, Qin T, Lo JC, Lee BJ, Spergel SH, Mertzman ME, Pitts WJ, La Cruz TE, Schmidt MA, Darvatkar N, Natarajan SR, Baran PS. Science 2015; 348: 886
- 2b Shevlin M, Guan X, Driver TG. ACS Catal. 2017; 7: 5518
- 2c Song H, Yang Z, Tung C.-H, Wang W. ACS Catal. 2020; 10: 276
- 2d Cheung CW, Ma J.-A, Hu X. J. Am. Chem. Soc. 2018; 140: 6789
- 2e Rauser M, Eckert R, Gerbershagen M, Niggemann M. Angew. Chem. Int. Ed. 2019; 58: 6713
- 3a Cadogan JI. G, Cameron-Wood M, Mackie RK, Searle RJ. G. J. Chem. Soc. 1965; 4831
- 3b Nykaza TV, Cooper JC, Li G, Mahieu N, Ramirez A, Luzung MR, Radosevich AT. J. Am. Chem. Soc. 2018; 140: 15200
- 3c Nykaza TV, Li G, Yang J, Luzung MR, Radosevich AT. Angew. Chem. Int. Ed. 2020; 59: 4505
- 4a Sapountzis I, Knochel P. J. Am. Chem. Soc. 2002; 124: 9390
- 4b Gao H, Xu Q.-L, Yousufuddin M, Ess DH, Kürti L. Angew. Chem. Int. Ed. 2014; 53: 2701
- 5a Nguyen TB. Adv. Synth. Catal. 2017; 359: 1066
- 5b Liu H, Jiang X. Chem. Asian J. 2013; 8: 2546
- 6a Nguyen TB, Retailleau P. Org. Lett. 2017; 19: 4858
- 6b Guntreddi T, Vanjari R, Singh KN. Org. Lett. 2015; 17: 976
- 7a Do NT, Tran KM, Phan HT, To TA, Nguyen TT, Phan NT. S. Org. Biomol. Chem. 2019; 17: 8987
- 7b Ho TH, Le HH. K, To TA, Nguyen TT, Phan NT. S. Bull. Chem. Soc. Jpn. 2020; 93: 783
- 7c Nguyen TB, Ermolenko L, Al-Mourabit A. Org. Lett. 2013; 15: 4218
- 8 Xing Q, Ma Y, Xie H, Xiao F, Zhang F, Deng G.-J. J. Org. Chem. 2019; 84: 1238
- 9a Patrick DA, Gillespie JR, McQueen J, Hulverson MA, Ranade RM, Creason SA, Herbst ZM, Gelb MH, Buckner FS, Tidwell RR. J. Med. Chem. 2017; 60: 957
- 9b Haile PA, Casillas LN, Votta BJ, Wang GZ, Charnley AK, Dong X, Bury MJ, Romano JJ, Mehlmann JF, King BW, Erhard KF, Hanning CR, Lipshutz DB, Desai BM, Capriotti CA, Schaeffer MC, Berger SB, Mahajan MK, Reilly MA, Nagilla R, Rivera EJ, Sun HH, Kenna JK, Beal AM, Ouellette MT, Kelly M, Stemp G, Convery MA, Vossenkämper A, MacDonald TT, Gough PJ, Bertin J, Marquis RW. J. Med. Chem. 2019; 62: 6482
- 9c Feng M, Tang B, Liang SH, Jiang X. Curr. Top. Med. Chem. (Sharjah, United Arab Emirates) 2016; 16: 1200
-
10
N,N-Dimethyl-2-(6-methylpyridin-2-yl)-1,3-benzothiazol-5-amine (3ab); Typical Procedure
An 8 mL screw-cap vial was charged with nitroaniline 1a (0.5 mmol, 83.0 mg), 2,6-dimethylpyridine (2b; 1.0 mmol, 107.0 mg), elemental sulfur (1 mmol, 32 mg), and DABCO (0.375 mmol, 42 mg). The vial was capped, flushed with a strong flow of argon for 5 min, and placed in a preheated bath at 120 °C for 16 h. The mixture was then cooled to r.t. and H2O (3 mL) was added. The organic components were then extracted into EtOAc (3 × 5 mL). The combined organic extracts were dried (Na2SO4), filtered, concentrated in vacuo, and purified by column chromatography [silica gel, hexanes–EtOAc (gradient 20:1 to 3:1)] to give an orange solid; yield: 113.5 mg (84%); mp 127–130 °C; Rf
= 0.37 (hexanes–EtOAc, 3:1).
1H NMR (500 MHz, DMSO-d
6): d = 8.07 (d, J = 7.5 Hz, 1 H), 7.91–7.85 (m, 2 H), 7.41 (d, J = 7.5 Hz, 1 H), 7.30 (s, 1 H), 7.04 (d, J = 8.5 Hz, 1 H), 2.99 (s, 6 H), 2.57 (s, 3 H). 13C NMR (126 MHz, DMSO-d
6): d = 169.2, 158.4, 155.6, 150.1, 150.0, 137.8, 125.2, 123.2, 122.1, 117.2, 113.7, 105.0, 40.6, 23.9. HRMS (ESI+): m/z [M + H]+ calcd for C15H16N3S+: 270.1059; found: 270.1061.
- 11a Emsley J, Griffiths DW, Jayne GJ. J. J. Chem. Soc., Perkin Trans. 1 1979; 228
- 11b Chivers T, Elder PJ. W. Chem. Soc. Rev. 2013; 42: 5996
- 11c Wang M, Dai Z, Jiang X. Nat. Commun. 2019; 10: 2661
- 11d Tan W, Wei J, Jiang X. Org. Lett. 2017; 19: 2166
- 11e Wang M, Fan Q, Jiang X. Org. Lett. 2016; 18: 5756
For selected examples, see:
For reviews on the use of elemental sulfur in organic synthesis, see:
For selected examples, see:
For a review of drugs containing sulfur-containing functionalities, see: