Synthesis 2021; 53(02): 279-295
DOI: 10.1055/s-0040-1706535
short review

The Application of 4Å Molecular Sieves in Organic Chemical Syntheses: An Overview

Ágnes Magyar
,
Kinga Juhász
,
Zoltán Hell
Á. M. is grateful to the József Varga Foundation for the financial support. The research reported in this paper and carried out at the Budapest University of Technology and Economics has been supported by the National Research Development and Innovation Fund based on the charter of bolster issued by the National Research and Innovation Office under the auspices of the Ministry for Innovation and Technology.


Abstract

In the last two decades, considerable attention has been devoted to the use of 4Å molecular sieves (MS 4A) in organic chemical syntheses. Initially, they were applied as drying agents in order to dry gases, solvents and liquid reagents. Nowadays, there is a growing tendency to apply MS 4A as an additive, catalyst, co-catalyst or catalyst support in organic reactions. In this review, we aim to summarize the recent examples of organic syntheses promoted by MS 4A from 1997 to 2020. We hope to provide the reader with an overview of the potential of MS 4A in the field of organic synthesis.

1 Introduction

2 Application as an Additive

3 Application as Catalyst

4 Application as Co-catalyst

5 Application as Support

6 Conclusion



Publication History

Received: 01 July 2020

Accepted after revision: 06 September 2020

Article published online:
22 October 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Breck DW. Zeolite Molecular Sieves: Structure, Chemistry, and Use. Wiley-Interscience; New York: 1974
  • 2 van der Waal J, van Bekkum H. J. Porous Mater. 1998; 5: 289
  • 3 Fieser LF, Fieser M. Reagents for Organic Synthesis. Wiley; New York: 1967
  • 4 Breck DW. J. Chem. Educ. 1964; 41: 678
  • 5 Sen SE, Smith SM, Sullivan KA. Tetrahedron 1999; 55: 12657
  • 6 Barthomeuf D, Coudurier G, Vedrine JC. Mater. Chem. Phys. 1988; 18 (05) 553
  • 7 Asakura N, Hirokane T, Hoshida H, Yamada H. Tetrahedron Lett. 2011; 52: 534
  • 8 Iovel I, Golomba L, Belyakov S, Kemme A, Lukevics E. Appl. Organomet. Chem. 2001; 15: 733
  • 9 Sui Y, Liu L, Zhao J.-L, Wang D, Chen Y.-J. Tetrahedron Lett. 2007; 48: 3779
  • 10 Kuninobu Y, Nishi M, Yudha SS, Takai K. Org. Lett. 2008; 10 (14) 3009
  • 11 Bhattacharya AK, Rana KC, Raut DS, Mhaindarkar VP, Khan MI. Org. Biomol. Chem. 2011; 9: 5407
  • 12 Esmaeili AA, Ghalandarabad SA, Zangouei M. Tetrahedron Lett. 2012; 53: 5605
  • 13 Esmaeili AA, Ghalandarabad SA, Jannati S. Tetrahedron Lett. 2013; 54: 406
  • 14 Ahmed N, Konduru NK. Beilstein J. Org. Chem. 2012; 8: 177
  • 15 Ghosh AK, Keyes C, Veitschegger AM. Tetrahedron Lett. 2014; 55: 4251
  • 16 Noushini S, Mahdavi M, Firoozpour L, Moghimi S, Shafiee A, Foroumadi A. Tetrahedron 2015; 71: 6272
  • 17 Han X, Ma C, Wu Z, Huang G. Synthesis 2016; 48: 351
  • 18 Watahiki T, Ohba S, Oriyama T. Org. Lett. 2003; 5: 2679
  • 19 Iwanami K, Hinakubo Y, Oriyama T. Tetrahedron Lett. 2005; 46: 5881
  • 20 Iwanami K, Oriyama T. Synlett 2006; 112
  • 21 Oriyama T, Aoyagi M, Iwanami K. Chem. Lett. 2007; 36: 612
  • 22 Chiba R, Oriyama T. Chem. Lett. 2008; 37: 1218
  • 23 Kakinuma T, Chiba R, Oriyama T. Chem. Lett. 2008; 37: 1204
  • 24 Kakinuma T, Oriyama T. Tetrahedron Lett. 2010; 51: 290
  • 25 Kanemasa S, Oderaotoshi Y, Tanaka J, Wada E. J. Am. Chem. Soc. 1998; 120: 12355
  • 26 Kawamura M, Kobayashi S. Tetrahedron Lett. 1999; 40: 3213
  • 27 Moharram SM, Hirai G, Koyama K, Oguri H, Hirama M. Tetrahedron Lett. 2000; 41: 6669
  • 28 Kodama H, Ito J, Nagaki A, Ohta T, Furukawa I. Appl. Organomet. Chem. 2000; 14: 709
  • 29 Chen G, Deng Y, Gong L, Mi A, Cui X, Jiang Y, Choi MC. K, Chan AS. C. Tetrahedron: Asymmetry 2001; 12: 1567
  • 30 Hoshino Y, Ikeda Y, Nakai Y, Honda K. Chem. Lett. 2017; 46: 1743
  • 31 Iida T, Yamamoto N, Sasai H, Shibasaki M. J. Am. Chem. Soc. 1997; 119: 4783
  • 32 Ohori K, Shimizu S, Ohshima T, Shibasaki M. Chirality 2000; 12: 400
  • 33 Massa A, D’Ambrosi A, Proto A, Scettri A. Tetrahedron Lett. 2001; 42: 1995
  • 34 Monfregola L, De Luca S. Amino Acids 2011; 41: 981
  • 35 Durvasula VV, Khanna B. Org. Chem.: Curr. Res. 2015; S5, 003
  • 36 Pérez-Serrano L, Blanco-Urgoiti J, Casarrubios L, Domínguez G, Pérez-Castells J. J. Org. Chem. 2000; 65: 3513
  • 37 Blanco-Urgoiti J, Casarrubios L, Domínguez G, Pérez-Castells J. Tetrahedron Lett. 2001; 42: 3315
  • 38 Matsuura T, Bode JW, Hachisu Y, Suzuki K. Synlett 2003; 1746
  • 39 Zhong F, Jiang C, Yao W, Xu L.-W, Lu Y. Tetrahedron Lett. 2013; 54: 4333
  • 40 Dutra LG, Saibert C, Vicentini DS, Sá MM. J. Mol. Catal. A: Chem. 2014; 386: 35
  • 41 Eisavi R, Zeynizadeh B, Baradarani MM. Bull. Korean Chem. Soc. 2011; 32: 630
  • 42 Eisavi R, Zeynizadeh B, Baradarani MM. Phosphorus, Sulfur Silicon Relat. Elem. 2011; 186: 1902
  • 43 Hasegawa M, Ono F, Kanemasa S. Tetrahedron Lett. 2008; 49: 5220
  • 44 Liéby-Muller F, Constantieux T, Rodriguez J. Synlett 2007; 1323
  • 45 Liéby-Muller F, Allais C, Constantieux T, Rodriguez J. Chem. Commun. 2008; 4207
  • 46 Sotoca E, Allais C, Constantieux T, Rodriguez J. Org. Biomol. Chem. 2009; 7: 1911
  • 47 Shinde PV, Labade VB, Shingate BB, Shingare MS. J. Mol. Catal. A: Chem. 2011; 336: 100
  • 48 Gujar JB, Chaudhari MA, Kawade DS, Shingare MS. Tetrahedron Lett. 2014; 55: 6030
  • 49 Magyar Á, Hell Z. Monatsh. Chem. 2019; 150: 2021
  • 50 Ono F, Ohta Y, Hasegawa M, Kanemasa S. Tetrahedron Lett. 2009; 50: 2111
  • 51 Yamamoto M, Oshima K, Matsubara S. Chem. Lett. 2004; 33: 846
  • 52 Zhao Y.-W, Cao L.-H. J. Chin. Chem. Soc. 2008; 55: 385
  • 53 Ono M, Suzuki K, Akita H. Tetrahedron Lett. 1999; 40: 8223
  • 54 Okachi T, Fujimoto K, Onaka M. Org. Lett. 2002; 4: 1667
  • 55 Liu Y.-H, Cao L.-H. Carbohydr. Res. 2008; 343: 2376
  • 56 Zhou J, Zhang B, Yang G, Chen X, Wang O, Wang Z, Zhang J, Tang J. Synlett 2010; 893
  • 57 Chen S.-Y, Zhou X.-T, Ji H.-B. Catal. Today 2016; 264: 191
  • 58 Juhász K, Hell Z. Tetrahedron Lett. 2018; 59: 3136
  • 59 Juhász K, Hell Z. Period. Polytech. Chem. Eng. 2019; 63: 636
  • 60 Németh J, Debreczeni N, Gresits I, Bálint M, Hell Z. Catal. Lett. 2015; 145: 1113
  • 61 Zsolczai D, Németh J, Hell Z. Tetrahedron Lett. 2015; 56: 6389
  • 62 Magyar Á, Nagy B, Hell Z. Catal. Lett. 2015; 145: 1876
  • 63 Li Y, Zhao X.-Q, Wang Y.-J. Appl. Catal., A 2005; 279: 205
  • 64 Chen H, Wang S, Xiao M, Han D, Lu Y, Meng Y. Chin. J. Chem. Eng. 2012; 20 (05) 906
  • 65 Cho CS, Ren WX, Yoon NS. J. Mol. Catal. A: Chem. 2009; 299: 117
  • 66 Dey R, Sreedhar B, Ranu BC. Tetrahedron 2010; 66: 2301
  • 67 Fodor A, Kiss Á, Debreczeni N, Hell Z, Gresits I. Org. Biomol. Chem. 2010; 8: 4575
  • 68 Debreczeni N, Fodor A, Hell Z. Catal. Lett. 2014; 144: 1547
  • 69 Fodor A, Hell Z, Pirault-Roy L. Appl. Catal., A 2014; 484: 39
  • 70 Fodor A, Magyar Á, Barczikai D, Pirault-Roy L, Hell Z. Catal. Lett. 2015; 145: 834
  • 71 Magyar Á, Hell Z. Monatsh. Chem. 2016; 147: 1583
  • 72 Hu X, Bai J, Li C, Wu Y. React. Kinet. Catal. Lett. 2017; 120: 359
  • 73 Kiss Á, Hell Z. Synth. Commun. 2013; 43: 1778
  • 74 Kiss Á, Hell Z. Tetrahedron Lett. 2011; 52: 6021
  • 75 Magyar Á, Hell Z. Catal. Lett. 2016; 146: 1153
  • 76 Magyar Á, Hell Z. Period. Polytech. Chem. Eng. 2017; 61: 278
  • 77 Magyar Á, Hell Z. Green Process. Synth. 2018; 7: 316
  • 78 Magyar Á, Hell Z. Synlett 2019; 30: 89
  • 79 Magyar Á, Hell Z. Catal. Lett. 2019; 149: 2528
  • 80 Németh J, Kiss Á, Hell Z. React. Kinet. Catal. Lett. 2014; 111: 115