Synlett 2021; 32(01): 57-62
DOI: 10.1055/s-0040-1706537
letter

Formal [5+3] Cycloaddition between Isatin-Based α-(Trifluoromethyl)imine Ylides and Vinyloxiranes: Diastereoselective Access to Medium-Heterocycle-Fused Spirooxindoles

Hong-Wu Zhao
a   Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, No. 100 Pingleyuan, Chaoyang District, Beijing 100124, P. R. of China   Email: hwzhao@bjut.edu.cn
,
Li-Ru Wang
a   Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, No. 100 Pingleyuan, Chaoyang District, Beijing 100124, P. R. of China   Email: hwzhao@bjut.edu.cn
,
Wan-Qiu Ding
a   Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, No. 100 Pingleyuan, Chaoyang District, Beijing 100124, P. R. of China   Email: hwzhao@bjut.edu.cn
,
Jia-Ming Guo
a   Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, No. 100 Pingleyuan, Chaoyang District, Beijing 100124, P. R. of China   Email: hwzhao@bjut.edu.cn
,
Zhe Tang
a   Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, No. 100 Pingleyuan, Chaoyang District, Beijing 100124, P. R. of China   Email: hwzhao@bjut.edu.cn
,
Xiu-Qing Song
,
Hui-Hui Wu
a   Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, No. 100 Pingleyuan, Chaoyang District, Beijing 100124, P. R. of China   Email: hwzhao@bjut.edu.cn
,
Xiao-Zu Fan
a   Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, No. 100 Pingleyuan, Chaoyang District, Beijing 100124, P. R. of China   Email: hwzhao@bjut.edu.cn
,
Xiao-Fan Bi
a   Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, No. 100 Pingleyuan, Chaoyang District, Beijing 100124, P. R. of China   Email: hwzhao@bjut.edu.cn
,
Qi-Di Zhong
b   School of Pharmacy, North China University of Science and Technology, Tangshan, Hebei 063210, P. R. of China
› Author Affiliations
We thank the Beijing Municipal Commission of Education (JC015001200902), the BeijingNatural Science Foundation (7102010, 2122008, and 2172003), the Basic Research Foundation of Beijing University of Technology (X4015001201101), the Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality (PHR201008025), and the Doctoral Scientific Research Start-up Foundation of Beijing University of Technology (52015001200701) for financial supports.


Abstract

In the presence of Pd2(dba)3·CHCl3 (2.5 mol%), PPh3 (10 mol%), and 60% NaH (1.5 equiv), the formal [5+3] cycloaddition between isatin-based α-(trifluoromethyl)imines and vinyloxiranes proceeded readily in 1,2-DCE at 40 ℃ and afforded cis-configured medium-heterocycle-fused spirooxindoles in the reasonable chemical yields with >20:1 dr. The relative stereochemical configuration of the title products was identified by X-ray diffraction analysis.

Supporting Information



Publication History

Received: 05 August 2020

Accepted after revision: 21 September 2020

Article published online:
22 October 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes


    • For selected reviews, see:
    • 1a Pandey G, Banerjee P, Gadre SR. Chem. Rev. 2006; 106: 4484
    • 1b Coldham L, Hufton R. Chem. Rev. 2005; 105: 2765
    • 1c Tang S.-J, Zhang X, Sun J.-Y, Niu D.-W, Chruma JJ. Chem. Rev. 2018; 118: 10393
    • 1d Hashimoto T, Maruoka K. Chem. Rev. 2015; 115: 5366
    • 1e Gothelf KV, Jørgensen KA. Chem. Rev. 1998; 98: 863

      For selected examples, see:
    • 2a Mei G.-J, Shi F. Chem. Commun. 2018; 54: 6607
    • 2b Cheng D.-Y, Ishihara Y, Tan B, Barbas CF. III. ACS Catal. 2014; 4: 743

      For selected examples, see:
    • 3a Ryu H, Seo J, Ko HM. J. Org. Chem. 2018; 83: 14102
    • 3b Wu X.-Y, Gao Y.-N, Shi M. Eur. J. Org. Chem. 2019; 1620
    • 3c Gao X.-Y, Yan R.-J, Xiao B.-X, Du W, Albrecht L, Chen Y.-C. Org. Lett. 2019; 21: 9628
    • 3d Li B.-Y, Gao F.-Y, Feng X, Sun M.-M, Guo Y.-F, Wen D.-W, Deng YB, Huang J.-Q, Wang K.-R, Yan W.-J. Org. Chem. Front. 2019; 6: 1567
    • 3e Zhao B.-L, Du D.-M. Adv. Synth. Catal. 2019; 361: 3412
    • 3f Lin Y, Song YX, Du DM. Adv. Synth. Catal. 2019; 361: 1064
    • 3g Wang C, Wen DW, Chen H, Deng Y.-B, Liu X.-T, Liu X, Wang L, Gao F.-Y, Guo Y.-F, Sun M.-M, Wang K.-R, Yan WJ. Org. Biomol. Chem. 2019; 17: 5514
    • 3h Ponce A, Alonso I, Adrio J, Carretero JC. Chem. Eur. J. 2016; 22: 4952
    • 3i Zhao X.-Y, Xiong J.-L, An JK, Yu J.-C, Zhu L.-P, Feng X, Jiang X.-X. Org. Chem. Front. 2019; 6: 1989
    • 3j Ma M, Zhu Y, Sun Q, Li X, Su J, Zhao L, Zhao Y, Qiu S, Yan W, Wang K, Wang R. Chem. Commun. 2015; 51: 8789
    • 3k Gui H.-Z, Gao Y.-N, Wei Y, Shi M. Chem. Eur. J. 2018; 24: 10038
    • 3l Sun QT, Li XY, Su J.-H, Zhao L, Ma M.-X, Zhu Y.-Y, Zhao Y.-Y, Zhu R.-R, Yan W.-J, Wang K.-R, Wang R. Adv. Synth. Catal. 2015; 357: 3187
    • 3m Wang Z.-H, Wu Z.-J, Yue D.-F, Hu W.-F, Zhang X.-M, Xu X.-Y, Yuan W.-C. Chem. Commun. 2016; 52: 11708
    • 3n Huang W.-J, Chen Q, Lin N, Long X.-W, Pan WG, Xiong Y.-S, Weng J, Lu G. Org. Chem. Front. 2017; 4: 472
    • 3o Song Y.-X, Du D.-M. J. Org. Chem. 2018; 83: 9278
    • 3p You Y, Lu W.-Y, Wang Z.-H, Chen Y.-Z, Xu X.-Y, Zhang X.-M. Org. Lett. 2018; 20: 4453
  • 4 Zhao H.-W, Guo J.-M, Wang L.-R, Ding W.-Q, Tang Z, Song X.-Q, Wu H.-H, Fan X.-Z, Bi X.-F. Org. Chem. Front. 2019; 6: 3891
    • 5a Niu B, Wu X.-Y, Wei Y, Shi M. Org. Lett. 2019; 21: 4859
    • 5b Zhao H.-W, Wang L.-R, Guo J.-M, Ding W.-Q, Song X.-Q, Wu H.-H, Tang Z, Fan X.-Z, Bi X.-F. Adv. Synth. Catal. 2019; 361: 4761

      For selected examples, see:
    • 6a Onyeagusi CI, Shao XX, Malcolmson SJ. Org. Lett. 2020; 22: 1681
    • 6b Gao Y.-N, Shi M. Eur. J. Org. Chem. 2017; 1552
    • 6c Li X.-Y, Su J.-H, Liu Z, Zhu Y.-Y, Dong Z.-H, Qiu S, Wang J, Lin L, Shen Z, Yan W, Wang K, Wang R. Org. Lett. 2016; 18: 956
    • 6d Shi L.-M, Sun X.-S, Shen C, Wang Z.-F, Tao H.-Y, Wang C.-J. Org. Lett. 2019; 21: 4842

      For selected examples, see:
    • 7a Zhou M.-B, Song R.-J, Wang C.-Y, Li J.-H. Angew. Chem. Int. Ed. 2013; 52: 10805
    • 7b Majumdar KC. RSC Adv. 2011; 1: 1152
    • 7c Zhao H.-W, Pang H.-L, Tian T, Li B, Chen X.-Q, Song X.-Q, Meng W, Yang Z, Liu Y.-Y, Zhao Y.-D. Adv. Synth. Catal. 2016; 358: 1826
    • 7d Gao X, Xia M, Yuan C, Zhou L, Sun W, Li C, Wu B, Zhu D, Zhang C, Zheng B, Wang D.-Q, Guo H.-C. ACS Catal. 2019; 9: 1645

      For selected examples, see:
    • 8a He J, Ling J, Chiu P. Chem. Rev. 2014; 114: 8037
    • 8b Suo J.-J, Du J, Liu Q.-R, Chen D, Ding CH, Peng Q, Hou X.-L. Org. Lett. 2017; 19: 6658
    • 8c Cheng Q, Zhang H.-J, Yue W.-J, You SL. Chem 2017; 3: 428
    • 8d Wu Y, Yuan C, Wang C, Mao B, Jia H, Gao X, Liao J, Jiang F, Zhou L, Wang Q, Guo H.-C. Org. Lett. 2017; 19: 6268
    • 8e Yuan C, Wu Y, Wang D, Zhang Z, Wang C, Zhou L, Zhang C, Song B, Guo H.-C. Adv. Synth. Catal. 2018; 360: 652
    • 8f Wang Y.-N, Yang L.-C, Rong Z.-Q, Liu T.-L, Liu R, Zhao Y. Angew. Chem. Int. Ed. 2018; 57: 1596
    • 8g Guo B.-Y, Vitaku E, Njardarson JT. Tetrahedron Lett. 2014; 55: 3232
    • 8h Matsui JK, Bonet AG, Rotella M, Alam R, Gutierrez O, Molander GA. Angew. Chem. Int. Ed. 2018; 57: 15847
    • 8i Trost BM, Brown BS, McEachern EJ, Kuhn O. Chem. Eur. J. 2003; 9: 4442

      For selected examples, see:
    • 9a Aguilar A, Lu J.-F, Liu L, Du D, Bernard D, McEachern D, Przybranowski S, Li XQ, Luo RJ, Wen B, Sun D.-X, Wang H.-B, Wen J.-F, Wang G.-F, Zhai Y.-F, Guo M, Yang D.-J, Wang S.-M. J. Med. Chem. 2017; 60: 2819
    • 9b Zhao Y.-J, Yu S.-H, Sun W, Liu L, Lu J.-F, McEachern D, Shargary S, Bernard D, Li X.-Q, Zhao T, Zou P, Sun D.-X, Wang SM. J. Med. Chem. 2013; 56: 5553
    • 9c Gicquel M, Gomez C, Concepcion M, Alvarez G, Pamlard O, Guerineau V, Jacquet E, Bignon J, Voituriez A, Marinetti A. J. Med. Chem. 2018; 61: 9386
    • 9d Kornet MJ, Thio AP. J. Med. Chem. 1976; 19: 892
    • 9e Zhang W.-H, Chen S, Liu X.-L, Feng T.-T, Yang W.-D, Zhou Y. Bioorg. Med. Chem. 2019; 27: 115109
    • 9f Kumar RS, Almansour AI, Arumugam N, Mohammad F, Kotresha D, Menendez JC. Bioorg. Med. Chem. 2019; 27: 2487
  • 10 Typical Procedure and Characterization Data for 3ba A mixture of isatin-based α-(trifluoromethyl)imine 1 (1.0 equiv, 0.1 mmol), vinyloxirane 2 (1.5 equiv, 0.15 mmol), Pd2(dba)3·CHCl3 (2.5 mol%), PPh3 (10.0 mol%), and 60% NaH (1.5 equiv, 0.15 mmol) in 1,2-DCE (1.0 mL) was stirred at 40 ℃ for 3 h. After the reaction was completed as indicated by TLC plate, the solvent was removed by evaporation and the resulted crude product was purified by flash column chromatography on silica gel (petroleum ether/EtOAc, 6:1 to 10:1) to afford cis-configured 3ba. Analytical Data White solid; yield: 22.1 mg (52%); mp 204.1–205.0 ℃. 1H NMR (400 MHz, CDCl3): δ = 7.54–7.52 (m, 2 H), 7.46–7.42 (m, 2 H), 7.39–7.35 (m, 2 H), 7.21 (d, J = 2.0 Hz, 1 H), 6.87 (d, J = 8.3 Hz, 1 H), 6.31 (t, J = 8.3 Hz, 1 H), 4.97–4.91 (m, 1 H), 4.87 (d, J = 13.7 Hz, 1 H), 4.71 (d, J = 13.7 Hz, 1 H), 3.27 (s, 3 H), 3.00 (dd, J = 13.6, 8.2 Hz, 1 H), 2.86 (d, J = 12.0 Hz, 1 H), 2.50–2.45 (m, 1 H). 13C NMR (100 MHz, CDCl3): δ = 175.9, 141.5, 140.8, 140.3, 132.4, 129.1, 128.8, 128.2, 128.1, 125.9, 125.7, 124.7, 122.9 (q, J C,F = 280.0 Hz), 109.9, 80.3 (q, J C,F = 34.0 Hz), 64.7, 62.2, 36.0, 26.6. HRMS (ESI): m/z calcd for C21H19ClF3N2O2 [M + H]+: 423.1082; found: 423.1097.
  • 11 CCDC 2000593 (cis-3ba) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/getstructures.