Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2021; 32(01): 57-62
DOI: 10.1055/s-0040-1706537
DOI: 10.1055/s-0040-1706537
letter
Formal [5+3] Cycloaddition between Isatin-Based α-(Trifluoromethyl)imine Ylides and Vinyloxiranes: Diastereoselective Access to Medium-Heterocycle-Fused Spirooxindoles
We thank the Beijing Municipal Commission of Education (JC015001200902), the BeijingNatural Science Foundation (7102010, 2122008, and 2172003), the Basic Research Foundation of Beijing University of Technology (X4015001201101), the Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality (PHR201008025), and the Doctoral Scientific Research Start-up Foundation of Beijing University of Technology (52015001200701) for financial supports.
Abstract
In the presence of Pd2(dba)3·CHCl3 (2.5 mol%), PPh3 (10 mol%), and 60% NaH (1.5 equiv), the formal [5+3] cycloaddition between isatin-based α-(trifluoromethyl)imines and vinyloxiranes proceeded readily in 1,2-DCE at 40 ℃ and afforded cis-configured medium-heterocycle-fused spirooxindoles in the reasonable chemical yields with >20:1 dr. The relative stereochemical configuration of the title products was identified by X-ray diffraction analysis.
Key words
[5+3] cycloaddition - isatin-based α-(trifluoromethyl)imine - vinyloxirane - spirooxindole - diastereoselectivitySupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1706537.
- Supporting Information
- CIF File
Publication History
Received: 05 August 2020
Accepted after revision: 21 September 2020
Article published online:
22 October 2020
© 2020. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Pandey G, Banerjee P, Gadre SR. Chem. Rev. 2006; 106: 4484
- 1b Coldham L, Hufton R. Chem. Rev. 2005; 105: 2765
- 1c Tang S.-J, Zhang X, Sun J.-Y, Niu D.-W, Chruma JJ. Chem. Rev. 2018; 118: 10393
- 1d Hashimoto T, Maruoka K. Chem. Rev. 2015; 115: 5366
- 1e Gothelf KV, Jørgensen KA. Chem. Rev. 1998; 98: 863
- 2a Mei G.-J, Shi F. Chem. Commun. 2018; 54: 6607
- 2b Cheng D.-Y, Ishihara Y, Tan B, Barbas CF. III. ACS Catal. 2014; 4: 743
- 3a Ryu H, Seo J, Ko HM. J. Org. Chem. 2018; 83: 14102
- 3b Wu X.-Y, Gao Y.-N, Shi M. Eur. J. Org. Chem. 2019; 1620
- 3c Gao X.-Y, Yan R.-J, Xiao B.-X, Du W, Albrecht L, Chen Y.-C. Org. Lett. 2019; 21: 9628
- 3d Li B.-Y, Gao F.-Y, Feng X, Sun M.-M, Guo Y.-F, Wen D.-W, Deng YB, Huang J.-Q, Wang K.-R, Yan W.-J. Org. Chem. Front. 2019; 6: 1567
- 3e Zhao B.-L, Du D.-M. Adv. Synth. Catal. 2019; 361: 3412
- 3f Lin Y, Song YX, Du DM. Adv. Synth. Catal. 2019; 361: 1064
- 3g Wang C, Wen DW, Chen H, Deng Y.-B, Liu X.-T, Liu X, Wang L, Gao F.-Y, Guo Y.-F, Sun M.-M, Wang K.-R, Yan WJ. Org. Biomol. Chem. 2019; 17: 5514
- 3h Ponce A, Alonso I, Adrio J, Carretero JC. Chem. Eur. J. 2016; 22: 4952
- 3i Zhao X.-Y, Xiong J.-L, An JK, Yu J.-C, Zhu L.-P, Feng X, Jiang X.-X. Org. Chem. Front. 2019; 6: 1989
- 3j Ma M, Zhu Y, Sun Q, Li X, Su J, Zhao L, Zhao Y, Qiu S, Yan W, Wang K, Wang R. Chem. Commun. 2015; 51: 8789
- 3k Gui H.-Z, Gao Y.-N, Wei Y, Shi M. Chem. Eur. J. 2018; 24: 10038
- 3l Sun QT, Li XY, Su J.-H, Zhao L, Ma M.-X, Zhu Y.-Y, Zhao Y.-Y, Zhu R.-R, Yan W.-J, Wang K.-R, Wang R. Adv. Synth. Catal. 2015; 357: 3187
- 3m Wang Z.-H, Wu Z.-J, Yue D.-F, Hu W.-F, Zhang X.-M, Xu X.-Y, Yuan W.-C. Chem. Commun. 2016; 52: 11708
- 3n Huang W.-J, Chen Q, Lin N, Long X.-W, Pan WG, Xiong Y.-S, Weng J, Lu G. Org. Chem. Front. 2017; 4: 472
- 3o Song Y.-X, Du D.-M. J. Org. Chem. 2018; 83: 9278
- 3p You Y, Lu W.-Y, Wang Z.-H, Chen Y.-Z, Xu X.-Y, Zhang X.-M. Org. Lett. 2018; 20: 4453
- 4 Zhao H.-W, Guo J.-M, Wang L.-R, Ding W.-Q, Tang Z, Song X.-Q, Wu H.-H, Fan X.-Z, Bi X.-F. Org. Chem. Front. 2019; 6: 3891
- 5a Niu B, Wu X.-Y, Wei Y, Shi M. Org. Lett. 2019; 21: 4859
- 5b Zhao H.-W, Wang L.-R, Guo J.-M, Ding W.-Q, Song X.-Q, Wu H.-H, Tang Z, Fan X.-Z, Bi X.-F. Adv. Synth. Catal. 2019; 361: 4761
- 6a Onyeagusi CI, Shao XX, Malcolmson SJ. Org. Lett. 2020; 22: 1681
- 6b Gao Y.-N, Shi M. Eur. J. Org. Chem. 2017; 1552
- 6c Li X.-Y, Su J.-H, Liu Z, Zhu Y.-Y, Dong Z.-H, Qiu S, Wang J, Lin L, Shen Z, Yan W, Wang K, Wang R. Org. Lett. 2016; 18: 956
- 6d Shi L.-M, Sun X.-S, Shen C, Wang Z.-F, Tao H.-Y, Wang C.-J. Org. Lett. 2019; 21: 4842
- 7a Zhou M.-B, Song R.-J, Wang C.-Y, Li J.-H. Angew. Chem. Int. Ed. 2013; 52: 10805
- 7b Majumdar KC. RSC Adv. 2011; 1: 1152
- 7c Zhao H.-W, Pang H.-L, Tian T, Li B, Chen X.-Q, Song X.-Q, Meng W, Yang Z, Liu Y.-Y, Zhao Y.-D. Adv. Synth. Catal. 2016; 358: 1826
- 7d Gao X, Xia M, Yuan C, Zhou L, Sun W, Li C, Wu B, Zhu D, Zhang C, Zheng B, Wang D.-Q, Guo H.-C. ACS Catal. 2019; 9: 1645
- 8a He J, Ling J, Chiu P. Chem. Rev. 2014; 114: 8037
- 8b Suo J.-J, Du J, Liu Q.-R, Chen D, Ding CH, Peng Q, Hou X.-L. Org. Lett. 2017; 19: 6658
- 8c Cheng Q, Zhang H.-J, Yue W.-J, You SL. Chem 2017; 3: 428
- 8d Wu Y, Yuan C, Wang C, Mao B, Jia H, Gao X, Liao J, Jiang F, Zhou L, Wang Q, Guo H.-C. Org. Lett. 2017; 19: 6268
- 8e Yuan C, Wu Y, Wang D, Zhang Z, Wang C, Zhou L, Zhang C, Song B, Guo H.-C. Adv. Synth. Catal. 2018; 360: 652
- 8f Wang Y.-N, Yang L.-C, Rong Z.-Q, Liu T.-L, Liu R, Zhao Y. Angew. Chem. Int. Ed. 2018; 57: 1596
- 8g Guo B.-Y, Vitaku E, Njardarson JT. Tetrahedron Lett. 2014; 55: 3232
- 8h Matsui JK, Bonet AG, Rotella M, Alam R, Gutierrez O, Molander GA. Angew. Chem. Int. Ed. 2018; 57: 15847
- 8i Trost BM, Brown BS, McEachern EJ, Kuhn O. Chem. Eur. J. 2003; 9: 4442
- 9a Aguilar A, Lu J.-F, Liu L, Du D, Bernard D, McEachern D, Przybranowski S, Li XQ, Luo RJ, Wen B, Sun D.-X, Wang H.-B, Wen J.-F, Wang G.-F, Zhai Y.-F, Guo M, Yang D.-J, Wang S.-M. J. Med. Chem. 2017; 60: 2819
- 9b Zhao Y.-J, Yu S.-H, Sun W, Liu L, Lu J.-F, McEachern D, Shargary S, Bernard D, Li X.-Q, Zhao T, Zou P, Sun D.-X, Wang SM. J. Med. Chem. 2013; 56: 5553
- 9c Gicquel M, Gomez C, Concepcion M, Alvarez G, Pamlard O, Guerineau V, Jacquet E, Bignon J, Voituriez A, Marinetti A. J. Med. Chem. 2018; 61: 9386
- 9d Kornet MJ, Thio AP. J. Med. Chem. 1976; 19: 892
- 9e Zhang W.-H, Chen S, Liu X.-L, Feng T.-T, Yang W.-D, Zhou Y. Bioorg. Med. Chem. 2019; 27: 115109
- 9f Kumar RS, Almansour AI, Arumugam N, Mohammad F, Kotresha D, Menendez JC. Bioorg. Med. Chem. 2019; 27: 2487
- 10 Typical Procedure and Characterization Data for 3ba A mixture of isatin-based α-(trifluoromethyl)imine 1 (1.0 equiv, 0.1 mmol), vinyloxirane 2 (1.5 equiv, 0.15 mmol), Pd2(dba)3·CHCl3 (2.5 mol%), PPh3 (10.0 mol%), and 60% NaH (1.5 equiv, 0.15 mmol) in 1,2-DCE (1.0 mL) was stirred at 40 ℃ for 3 h. After the reaction was completed as indicated by TLC plate, the solvent was removed by evaporation and the resulted crude product was purified by flash column chromatography on silica gel (petroleum ether/EtOAc, 6:1 to 10:1) to afford cis-configured 3ba. Analytical Data White solid; yield: 22.1 mg (52%); mp 204.1–205.0 ℃. 1H NMR (400 MHz, CDCl3): δ = 7.54–7.52 (m, 2 H), 7.46–7.42 (m, 2 H), 7.39–7.35 (m, 2 H), 7.21 (d, J = 2.0 Hz, 1 H), 6.87 (d, J = 8.3 Hz, 1 H), 6.31 (t, J = 8.3 Hz, 1 H), 4.97–4.91 (m, 1 H), 4.87 (d, J = 13.7 Hz, 1 H), 4.71 (d, J = 13.7 Hz, 1 H), 3.27 (s, 3 H), 3.00 (dd, J = 13.6, 8.2 Hz, 1 H), 2.86 (d, J = 12.0 Hz, 1 H), 2.50–2.45 (m, 1 H). 13C NMR (100 MHz, CDCl3): δ = 175.9, 141.5, 140.8, 140.3, 132.4, 129.1, 128.8, 128.2, 128.1, 125.9, 125.7, 124.7, 122.9 (q, J C,F = 280.0 Hz), 109.9, 80.3 (q, J C,F = 34.0 Hz), 64.7, 62.2, 36.0, 26.6. HRMS (ESI): m/z calcd for C21H19ClF3N2O2 [M + H]+: 423.1082; found: 423.1097.
- 11 CCDC 2000593 (cis-3ba) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/getstructures.
For selected reviews, see:
For selected examples, see:
For selected examples, see:
For selected examples, see:
For selected examples, see:
For selected examples, see:
For selected examples, see: