Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2021; 32(02): 219-223
DOI: 10.1055/s-0040-1706538
DOI: 10.1055/s-0040-1706538
letter
Reductive Ring-Opening 1,3-Difunctionalizations of Arylcyclopropanes with Sodium Metal
This work was supported by the Japan Society for the Promotion of Science (JSPS KAKENHI, JP19H00895), the Core Research for Evolutional Science and Technology (JST CREST, JPMJCR19R4), and by the Asahi Glass Foundation. We thank KOBELCO ECO-Solutions Co., Ltd. for providing sodium dispersion.
Abstract
Sodium dispersion promotes reductive ring opening of arylcyclopropanes. The presence of a reduction-resistant electrophile, such as methoxypinacolatoborane, epoxide, oxetane, paraformaldehyde, or chlorotrimethylsilane, during the reductive ring opening event leads to the formation of 1,3-difunctionalized 1-arylalkanes by immediate trappings of the resulting two reactive carbanions. In particular, the ring-opening 1,3-diborylations of arylcyclopropanes afford 1,3-diborylalkanes with high syn selectivity.
Key words
carbanions - cleavage - diastereoselectivity - electron transfer - metalation - reduction - ring opening - sodiumSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1706538.
- Supporting Information
Publication History
Received: 27 August 2020
Accepted after revision: 16 September 2020
Article published online:
22 October 2020
© 2020. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a de Meijere A. Angew. Chem., Int. Ed. Engl. 1979; 18: 809
- 1b Tsuji T, Nishida S. Acc. Chem. Res. 1984; 17: 56
- 1c Wong HN. C, Hon MY, Tse CW, Yip YC, Tanko J, Hudlicky T. Chem. Rev. 1989; 89: 165
- 1d Craig AJ, Hawkins BC. Synthesis 2020; 52: 27
- 1e Kulinkovich OG. Cyclopropanes in Organic Synthesis . Wiley-VCH; Weinheim: 2015
- 1f de Meijere A, Kozhushkov SI. Science of Synthesis, Vol. 48 . Hiemstra H. Thieme; Stuttgart: 2009: 477
- 2a Special issue on Chemistry of Donor-Acceptor Cyclopropanes and Cyclobutanes: Reissig H.-U, Werz DB. Eds.Israel J. Chem. 2016; 56: 365-577
- 2b Tang P, Qin Y. Synthesis 2012; 44: 2969
- 2c Schneider TF, Kaschel J, Werz DB. Angew. Chem. Int. Ed. 2014; 53: 5504
- 2d Cavitt MA, Phun LH, France S. Chem. Soc. Rev. 2014; 43: 804
- 2e Grover HK, Emmett MR, Kerr MA. Org. Biomol. Chem. 2015; 13: 655
- 2f Budynina EM, Ivanov KL, Sorokin ID, Melnikov MY. Synthesis 2017; 49: 3035
- 2g Singh P, Varshnaya RK, Dey R, Banerjee P. Adv. Synth. Catal. 2020; 362: 1447
- 3a Atkinson PH, Cambie RC, Dixon G, Noall WI, Rutledge PS. J. Chem. Soc., Perkin Trans. 1 1977; 230
- 3b Barluenga J, Martinez-Gallo JM, Najera C, Yus M. Synthesis 1987; 582
- 3c Zyk NV, Gavrilova AY, Bondarenko OB, Mukhina OA, Tikhanushkina VN. Russ. J. Org. Chem. 2011; 47: 340
- 3d Rösner C, Hennecke U. Org. Lett. 2015; 17: 3226
- 3e Wong Y.-C, Ke Z, Yeung Y.-Y. Org. Lett. 2015; 17: 4944
- 3f Ke Z, Wong Y.-C, See JY, Yeung Y.-Y. Adv. Synth. Catal. 2016; 358: 1719
- 3g Ilchenko NO, Hedberg M, Szabó KJ. Chem. Sci. 2017; 8: 1056
- 3h Banik SM, Mennie KM, Jacobsen EN. J. Am. Chem. Soc. 2017; 139: 9152
- 3i Gieuw MH, Ke Z, Yeung Y.-Y. Angew. Chem. Int. Ed. 2018; 57: 3782
- 3j Leung VM.-Y, Gieuw MH, Ke Z, Yeung Y.-Y. Adv. Synth. Catal. 2020; 362: 2039
- 4a Munavalli S, Rossman DI, Rohrbaugh DK, Durst HD. J. Fluorine Chem. 1998; 89: 189
- 4b Yasuda M, Kojima R, Tsutsui H, Utsunomiya D, Ishii K, Jinnouchi K, Shiragami T, Yamashita T. J. Org. Chem. 2003; 68: 7618
- 4c Pitts CR, Ling B, Snyder JA, Bragg AE, Lectka T. J. Am. Chem. Soc. 2016; 138: 6598
- 5a Boche G, Schneider DR, Wernicke K. Tetrahedron 1984; 25: 2961
- 5b Gómez C, Lillo VJ, Yus M. Tetrahedron 2007; 63: 4655
- 5c Cahard E, Schoenebeck F, Garnier J, Cutulic SP. Y, Zhou S, Murphy JA. Angew. Chem. Int. Ed. 2012; 51: 3673
- 6a Tsuchiya S, Saito H, Nogi K, Yorimitsu H. Org. Lett. 2019; 21: 3855
- 6b Takahashi F, Nogi K, Sasamori T, Yorimitsu H. Org. Lett. 2019; 21: 4739
- 6c Fukazawa M, Takahashi F, Nogi K, Sasamori K, Yorimitsu H. Org. Lett. 2020; 22: 2303
- 6d Ito S, Fukazawa M, Takahashi F, Nogi K, Yorimitsu H. Bull. Chem. Soc. Jpn. 2020; 93: 1171
- 7a Fawcett A, Nitsch D, Ali M, Bateman JM, Myers EL, Aggarwal VK. Angew. Chem. Int. Ed. 2016; 55: 14663
- 7b Blair BJ, Tanini D, Bateman JM, Scott HK, Myers EL, Aggarwal VK. Chem. Sci. 2017; 8: 2898
- 7c You C, Studer A. Angew. Chem. Int. Ed. 2020; 59: 17245
- 8a An J, Work DN, Kenyon C, Procter DJ. J. Org. Chem. 2014; 79: 6743
- 8b Han M, Ma X, Yao S, Ding Y, Yan Z, Adijiang A, Wu Y, Li H, Zhang Y, Lei P, Ling Y, An J. J. Org. Chem. 2017; 82: 1285
- 8c Li H, Zhang B, Dong Y, Liu T, Zhang Y, Nie H, Yang R, Ma X, Ling Y, An J. Tetrahedron Lett. 2017; 58: 2757
- 8d Han M, Ding Y, Yan Y, Li H, Luo S, Adijiang A, Ling Y, An J. Org. Lett. 2018; 20: 3010
- 8e Lei P, Ding Y, Zhang X, Adijiang A, Li H, Ling Y, An J. Org. Lett. 2018; 20: 3439
- 8f Zhang B, Li H, Ding Y, Yan Y, An J. J. Org. Chem. 2018; 83: 6006
- 8g Ding Y, Luo S, Adijiang A, Zhao H, An J. J. Org. Chem. 2018; 83: 12269
- 8h Asako S, Nakajima H, Takai K. Nat. Catal. 2019; 2: 297
- 8i Asako S, Kodera M, Nakajima H, Takai K. Adv. Synth. Catal. 2019; 361: 3120
- 8j Li H, Lai Z, Adijiang A, Zhao H, An J. Molecules 2019; 24: 459
- 8k Ding Y, Luo S, Ma L, An J. J. Org. Chem. 2019; 84: 15827
-
9
Experimental ProcedureAn oven-dried 20 mL Schlenk tube was charged with 4,4′-di-tert-butylbiphenyl (DTBB, 53.3 mg, 0.200 mmol), THF (4.0 mL), and trans-1a (191 mg, 0.983 mmol). After the mixture was cooled to –78 °C, MeOBpin (0.97 mL, 6.0 mmol) was added. Sodium dispersion (10.0 M, 0.40 mL, 4.0 mmol) was then added dropwise, and the resulting suspension was stirred at –78 °C for 1.5 h. The resulting mixture was warmed to 0 °C, and the reaction was then quenched with i-PrOH (0.31 mL, 4.0 mmol) and then aqueous NH4Cl (5 mL). The resulting biphasic solution was extracted with EtOAc (4 × 10 mL). The combined organic layer was dried over Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography (hexane to hexane/EtOAc = 30:1) on silica gel to provide 2a as a white solid (81% yield, 359 mg, 0.801 mmol, syn/anti = 89:11); mp 120–130 °C. 1H NMR (600 MHz, CDCl3): δ = 7.21 (dd, J = 7.5, 7.5 Hz, 0.89 × 4 H + m, 0.11 × 4 H), 7.13 (d, J = 7.5 Hz, 0.89 × 4 H + m, 0.11 × 4 H), 7.10 (t, J = 7.5 Hz, 0.89 × 2 H + m, 0.11 × 2 H), 2.36 (ddd, J = 14.4, 7.8, 7.8 Hz, 0.89 × 1 H), 2.30 (t, J = 7.8 Hz, 0.89 × 2 H), 2.25 (dd, J = 9.6, 6.6 Hz, 0.11 × 2 H), 2.21 (t, J = 6.6 Hz, 0.11 × 2 H), 2.02 (ddd, J = 14.4, 7.8, 7.8 Hz, 0.89 × 1 H), 1.20 (s, 0.89 × 12 H), 1.18 (s, 0.89 × 12 H), 1.15 (s, 0.11 × 12 H), 1.14 (s, 0.11 × 12 H). 13C NMR (151 MHz, CDCl3): δ (syn isomer) = 143.3, 128.6, 128.4, 125.3, 83.3, 35.2, 31.3 (br), 24.8. 11B NMR (192 MHz, CDCl3): δ = 33.1 (br). HRMS (APCI-MS, positive): m/z = 448.2957. Anal. Calcd for C27H38B2O4: 448.2960 [M]+.
-
10 The relative stereochemistry of 2a was unambiguously assigned after oxidation to the corresponding diol with retention of the stereochemistry.
- 11a Hoppe D, Hense T. Angew. Chem., Int. Ed. Engl. 1997; 36: 2282
- 11b Gawley RE. Tetrahedron Lett. 1999; 40: 4297
- 11c Basu A, Thayumanavan S. Angew. Chem. Int. Ed. 2002; 41: 716
- 11d The Chemistry of Organolithium Compounds . Rappoport Z, Marek I. Wiley; New York: 2003
- 12a Brown MP, Fowles GW. A. J. Chem. Soc. 1958; 2811
- 12b Kumada M, Ishikawa M. J. Organomet. Chem. 1963; 1: 153
- 12c Seitz DE, Ferreira L. Synth. Commun. 1979; 9: 451
- 12d Hwu JR, Ethiraj KS. Science of Synthesis, Vol. 4 . Fleming I. Thieme; Stuttgart: 2002: 187
-
13 B(OMe)3 was used as an electrophile instead of MeOBpin because diol 7 was difficult to separate chromatographically on silica gel from pinacol generated from hydrolysis of the Bpin group.
- 14 Bonet A, Odachowski M, Leonori D, Essafi S, Aggarwal VK. Nat. Chem. 2014; 6: 584
-
15 Although the anti-isomer of 8 is likely to be formed in less than 5% yield, we could not isolate the isomer.
Recent reviews:
For selected reports on ring-opening 1,3-difunctionalizations of arylcyclopropanes via electrophilic addition, see:
For selected reports on ring-opening 1,3-difunctionalizations via radical addition onto arylcyclopropanes, see:
Sodium dispersion as a highly reactive yet easy-to-handle reducing agent, see:
Organolithium compounds can react with electrophiles with either retention or inversion of the stereochemistry of the nucleophilic carbon center, which depends on the electrophiles used. See: