RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000084.xml
Synthesis 2021; 53(04): 673-681
DOI: 10.1055/s-0040-1706587
DOI: 10.1055/s-0040-1706587
feature
Synthesis of Tryptamines through a Novel Brønsted Acid Mediated Tandem Reaction Initiated by α-Iminol Rearrangement of Transient 2-Substituted 2-Hydroxycyclobutylimines
Financial support from the MIUR, Rome, by the University of Cagliari (FIR 2019) and from Regione Autonoma della Sardegna (Progetti Biennali di Ateneo Annualità 2018) and Fondazione Banco di Sardegna is acknowledged. C.I.N.M.P.I.S. ‘Consorzio Interuniversitario Nazionale di Ricerca in Metodologie e Processi Innovativi di Sintesi’ is also acknowledged.
Abstract
A novel Brønsted acid promoted condensation reaction between a primary aniline and 2-hydroxycyclobutanone provides access to diverse tryptamine derivatives in moderate to good yields. The proposed mechanism involves an α-iminol rearrangement, ring expansion, ring closure, and a depart-and-return rearrangement process.
Key words
tandem reaction - carbocycles - nitrogen heterocycles - synthetic methods - α-iminol rearrangementSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1706587.
- Supporting Information
Publikationsverlauf
Eingereicht: 03. September 2020
Angenommen nach Revision: 12. Oktober 2020
Artikel online veröffentlicht:
16. November 2020
© 2020. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Namsylo JC, Kaufmann DE. Chem. Rev. 2003; 103: 1485
- 1b Lee-Ruff E, Mladenova G. Chem. Rev. 2003; 103: 1449
- 1c Fu N.-Y, Chan S.-H. In The Chemistry of Cyclobutanes . Rappoport Z, Liebman JF. Wiley; Chichester: 2005: 357
- 1d Lee-Ruff E. In The Chemistry of Cyclobutanes . Rappoport Z, Liebman JF. Wiley; Chichester: 2005: 281
- 1e Salaün J. In Science of Synthesis, Vol. 26. Cossy J. Thieme; Stuttgart: 2004: 557-606
- 1f Secci F, Frongia A, Piras PP. Molecules 2013; 18: 15541
- 2a Aitken DJ, Capitta F, Frongia A, Ollivier J, Piras PP, Secci F. Synlett 2012; 727
- 2b Aitken DJ, Capitta F, Frongia A, Gori D, Guillot R, Ollivier J, Piras PP, Secci F, Spiga M. Synlett 2011; 712
- 3 Capitta F, Frongia A, Ollivier J, Piras PP, Secci F. Synlett 2011; 89
- 4a Cuccu F, Serusi L, Luridiana A, Secci F, Caboni P, Aitken DJ, Frongia A. Org. Lett. 2019; 21: 7755
- 4b Porcu S, Luridiana A, Martis A, Frongia A, Sarais G, Aitken DJ, Boddaert T, Guillot R, Secci F. Chem. Commun. 2018; 54: 13547
- 4c Conia JM, Robson MJ. Angew. Chem. Int. Ed. 1975; 14: 473
- 5a Aitken DJ, Caboni P, Eijsberg H, Frongia A, Guillot R, Ollivier J, Piras PP, Secci F. Adv. Synth. Catal. 2014; 356: 941
- 5b Frongia A, Melis N, Serra I, Secci F, Piras PP, Caboni P. Asian J. Org. Chem. 2014; 3: 378
- 5c Melis N, Ghisu L, Guillot R, Caboni P, Secci F, Aitken DJ, Frongia A. Eur. J. Org. Chem. 2015; 4358
- 6 Melis N, Secci F, Boddaert T, Aitken DJ, Frongia A. Chem. Commun. 2015; 51: 15272
- 7a Wang Z. Comprehensive Organic Name Reactions and Reagents. Wiley; New York: 2010: 74
- 7b Li L.-Y, Zeng Q.-L, Li G.-X, Tang Z. Synlett 2019; 30: 694
- 7c Chanda D, Harohally NV. Tetrahedron Lett. 2018; 59: 2983
- 7d Frongia A, Secci F, Capitta F, Piras PP, Sanna ML. Chem. Commun. 2013; 49: 8812
- 7e Guzi TG, Macdonald TL. Tetrahedron Lett. 1996; 37: 2939
- 7f Wrodnigg TM, Stütz AE. Angew. Chem. Int. Ed. 1999; 38: 827
- 8a Inman M, Moody CJ. Chem. Sci. 2013; 4: 29
- 8b Taber DF, Tirunahari PK. Tetrahedron 2011; 67: 7195
- 9a Paquette LA, Hofferberth JE. Org. React. 2003; 62: 477
- 9b Movassaghi M, Schmidt MA, Ashenhurst JA. Org. Lett. 2008; 10: 4009
- 9c Zhang X, Staples RJ, Rheingold AL, Wulff WD. J. Am. Chem. Soc. 2014; 136: 13971
- 9d Zhang X, Dai Y, Wulff WD. Synlett 2018; 29: 2015
- 9e Li G, Piemontesi C, Wang Q, Zhu J. Angew. Chem. Int. Ed. 2019; 58: 2870
- 9f Stevens CL, Ash AB, Thuillier A, Amin JH, Balys A, Dennis WE, Dickerson JP, Glinski RP, Hanson HT, Pillai MD, Stoddard JW. J. Org. Chem. 1966; 31: 2593
- 9g Stevens CL, Thuillier A, Taylor KG, Daniher FA, Dickerson JP, Hanson HT, Nielsen NA, Tikotkar NA, Weier RM. J. Org. Chem. 1966; 31: 2601
- 9h Stevens CL, Klundt IL, Munk ME, Pillai MD. J. Org. Chem. 1965; 30: 2967
- 10a Weier RM. Ph.D. Dissertation . Wayne State University; Detroit: 1967
- 10b Stevens CL, Pillai PM, Munk ME, Taylor KG. In Mechanisms of Molecular Migrations, Vol. 3. Thyagarajan BS. Wiley Interscience; New York: 1971: 271
- 10c Serusi L, Soddu F, Cuccu F, Peretti G, Luridiana A, Secci F, Caboni P, Aitken DJ, Frongia A. Adv. Synth. Catal. 2020; 362: 4159
- 11a Vergne F, Partogyan K, Aitken DJ, Husson H.-P. Tetrahedron 1996; 52: 2421
- 11b Methot JL, Dunstan TA, Mampreian DM, Adams B, Altman MD. Tetrahedron Lett. 2008; 49: 1155
-
12 PTSA was selected as the catalyst for this reaction on the basis of our previous investigations on related transformations; see reference 6.
-
13 The use of PTSA under these reaction conditions led to extensive decomposition of the reaction components.
For selected reviews on cyclobutanes, see:
For a comprehensive review on Favorskii or pinacol type ring contractions, see:
For critical assessments of strategies for indole synthesis, see:
For ring expansions related to B → C, see: