Synthesis 2021; 53(07): 1331-1340
DOI: 10.1055/s-0040-1706599
paper

Copper/GanPhos-Catalyzed 1,3-Dipolar Cycloaddition of Azo­methine Ylides: An Efficient Access to Chiral Pyrrolidine Spirocycles

Zhenjie Gan
a   School of Chemical and Printing-Dyeing Engineering, Henan University of Engineering, Zhengzhou, 451191, P. R. of China   eMail: zhenjiegan@163.com
,
Ke Li
b   College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, P. R. of China   eMail: lierqing@zzu.edu.cn
,
Hui Zhang
b   College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, P. R. of China   eMail: lierqing@zzu.edu.cn
,
Er-Qing Li
b   College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, P. R. of China   eMail: lierqing@zzu.edu.cn
› Institutsangaben
We are grateful to the National Natural Science Foundation of China (21702189), the Key Scientific and Technological Project of Henan Province (202102310004), the China Postdoctoral Science Foundation (2017M610458 and 2018T110737) and Henan University of Engineering of China for financial support of this research.


Abstract

A highly efficient copper/GanPhos-catalyzed 1,3-dipolar cyclo­addition­ of azomethine ylides is reported. This viable transformation provides a series of optically active spiro[dihydronaphthalene-2,3′-pyrrolidine]s, bearing one spiro quaternary and three tertiary stereogenic centers, in good yields and with high ee values. This protocol features high diastereo- and enantioselectivity, broad substrate scope and mild reaction conditions.

Supporting Information



Publikationsverlauf

Eingereicht: 01. Juli 2020

Angenommen nach Revision: 20. Oktober 2020

Artikel online veröffentlicht:
17. November 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For selected examples, see:
    • 1a Galliford CV, Scheidt KA. Angew. Chem. Int. Ed. 2007; 46: 8748
    • 1b Harvey AL. Drug Discovery Today 2008; 13: 894
    • 1c Li JW. H, Vederas JC. Science 2009; 325: 161
    • 2a Obniska J, Byrtus H, Kamiński K, Pawłowski M, Szczesio M, Karolak-Wojciechowska J. Bioorg. Med. Chem. 2010; 18: 6134
    • 2b Obniska J, Kołaczkowski M, Bojarski A, Duszyńska B. Eur. J. Med. Chem. 2006; 41: 874
  • 3 Jiang B, Xu M. Angew. Chem. Int. Ed. 2004; 43: 2543
  • 4 Tomita M, Okamoto Y, Kikuchi T, Osaki K, Nishikawa M, Kamiya K, Sasaki Y, Matoba K, Goto K. Chem. Pharm. Bull. 1971; 19: 770

    • For selected examples, see:
    • 5a Wei L, Chang X, Wang C.-J. Acc. Chem. Res. 2020; 53: 1084
    • 5b Maroto EE, Izquierdo M, Reboredo S, Marco-Martínez J, Filippone S, Martín N. Acc. Chem. Res. 2014; 47: 2660
    • 5c Hashimoto T, Maruoka K. Chem. Rev. 2015; 115: 5366
    • 5d Bdiri B, Zhao B.-J, Zhou Z.-M. Tetrahedron: Asymmetry 2017; 28: 876
    • 5e Adrio J, Carretero JC. Chem. Commun. 2014; 50: 12434
    • 5f Fang X, Wang C.-J. Org. Biomol. Chem. 2018; 16: 2591
    • 5g Adrio J, Carretero JC. Chem. Commun. 2019; 55: 11979
    • 5h Han R, Ding Y, Jin X, Li E.-Q. Org. Biomol. Chem. 2020; 18: 646
    • 5i Cui H, Li K, Wang Y, Song M, Wang C, Wei D, Li E.-Q, Duan Z, Mathey F. Org. Biomol. Chem. 2020; 18: 3740
    • 5j Liu T.-L, Xue Z.-Y, Tao H.-Y, Wang C.-J. Org. Biomol. Chem. 2011; 9: 1980
    • 5k Liu T.-L, He Z.-L, Li Q.-H, Tao H.-Y, Wang C.-J. Adv. Synth. Catal. 2011; 353: 1713
    • 5l Li Q.-H, Liu T.-L, Wei L, Tao H.-Y, Wang C.-J. Chem. Commun. 2013; 49: 9642
    • 5m Meng X, Du Y, Zhang Q, Yu A, Zhang Y, Jia J, Liu X. Asian J. Org. Chem. 2017; 6: 1719
  • 6 Allway P, Grigg R. Tetrahedron Lett. 1991; 32: 5817
  • 7 Liu Y, Li W, Zhang J. Natl. Sci. Rev. 2017; 4: 326

    • For selected examples, see:
    • 8a Antonchick AP, Gerding-Reimers C, Catarinella M, Schürmann M, Preut H, Ziegler S, Rauh D, Waldmann H. Nat. Chem. 2010; 2: 735
    • 8b Takayama H, Jia Z.-J, Kremer L, Bauer JO, Strohmann C, Ziegler S, Antonchick AP, Waldmann H. Angew. Chem. Int. Ed. 2013; 52: 12404

      For selected examples, see:
    • 9a Liu T.-L, He Z.-L, Wang C.-J. Chem. Commun. 2011; 47: 9600
    • 9b Teng H.-L, Huang H, Wang C.-J. Chem. Eur. J. 2012; 18: 12614
    • 9c Liu H.-C, Liu K, Xue Z.-Y, He Z.-L, Wang C.-J. Org. Lett. 2015; 17: 5440
    • 9d Liu H.-C, Tao H.-Y, Cong H, Wang C.-J. J. Org. Chem. 2016; 81: 3752
    • 9e Shen C, Yang Y, Wei L, Dong W.-W, Chung LW, Wang C.-J. iScience 2019; 11: 146

      For selected examples, see:
    • 10a Zhang Z.-M, Xu B, Xu S, Wu H.-H, Zhang J. Angew. Chem. Int. Ed. 2016; 55: 6324
    • 10b Xu B, Zhang Z.-M, Xu S, Liu B, Xiao Y, Zhang J. ACS Catal. 2017; 7: 210
    • 10c Liu B, Zhang Z.-M, Xu B, Xu S, Wu H.-H, Zhang J. Adv. Synth. Catal. 2018; 360: 2144
    • 10d Wang L, Chen M, Zhang J. Org. Chem. Front. 2019; 6: 694

      For selected examples, see:
    • 11a Liu Y.-Z, Shang S.-J, Yang W.-L, Luo X, Deng W.-P. J. Org. Chem. 2017; 82: 11141
    • 11b Liu Y.-Z, Shang S.-J, Zhu J.-Y, Yang W.-L, Deng W.-P. Adv. Synth. Catal. 2018; 360: 2191
    • 11c Deng H, Jia R, Yang W.-L, Yu X, Deng W.-P. Chem. Commun. 2019; 55: 7346
    • 11d Zou X.-J, Yang W.-L, Zhu J.-Y, Deng W.-P. Chin. J. Chem. 2020; 38: 435

      For other ligands used for 1,3-dipolar cycloadditions of azomethine ylides, see:
    • 12a Awata A, Arai T. Chem. Eur. J. 2012; 18: 8278
    • 12b Arai T, Ogawa H, Awata A, Sato M, Watabe M, Yamanaka M. Angew. Chem. Int. Ed. 2015; 54: 1595
    • 12c Deng H, He F.-S, Li C.-S, Yang W.-L, Deng W.-P. Org. Chem. Front. 2017; 4: 2343
    • 12d Zhu J.-Y, Yang W.-L, Liu Y.-Z, Shang S.-J, Deng W.-P. Org. Chem. Front. 2018; 5: 70
    • 12e Xu S, Zhang Z.-M, Xu B, Liu B, Liu Y, Zhang J. J. Am. Chem. Soc. 2018; 140: 2272
    • 12f Cheng F, Kalita SJ, Zhao Z.-N, Yang X, Zhao Y, Schneider U, Shibata N, Huang Y.-Y. Angew. Chem. Int. Ed. 2019; 58: 16637
    • 13a Zhi M, Gan Z, Ma R, Cui H, Li E.-Q, Duan Z, Mathey F. Org. Lett. 2019; 21: 3210
    • 13b Gan Z, Zhi M, Han R, Li E.-Q, Duan Z, Mathey F. Org. Lett. 2019; 21: 2782
    • 14a Xi Q.-Z, Gan Z.-J, Li E.-Q, Duan Z. Eur. J. Org. Chem. 2018; 4917
    • 14b Li E, Jin H, Huang Y. ChemistrySelect 2018; 3: 12007
    • 14c Gan Z, Gong Y, Chu Y, Li E.-Q, Huang Y, Duan Z. Chem. Commun. 2019; 55: 10120
    • 14d Ma R, Song G, Xi Q, Yang L, Li E.-Q, Duan Z. Chin. J. Org. Chem. 2019; 39: 2196
    • 14e Li E.-Q, Huang Y. Chem. Commun. 2020; 56: 680
  • 15 CCDC 1969641 (3oa) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
    • 16a Teng H.-L, Yao L, Wang C.-J. J. Am. Chem. Soc. 2014; 136: 4075
    • 16b Xue Z.-Y, Liu T.-L, Lu Z, Huang H, Tao H.-Y, Wang C.-J. Chem. Commun. 2010; 46: 1727
    • 16c Imae K, Konno T, Ogata K, Fukuzawa S. Org. Lett. 2012; 14: 4410
    • 16d Gong Y.-C, Wang Y, Li E.-Q, Cui H, Duan Z. Adv. Synth. Catal. 2019; 361: 1389
    • 17a Rahman AF. M. M, Ali R, Jahng Y, Kadi AA. Molecules 2012; 17: 571
    • 17b Zubia A, Mendoza L, Vivanco S, Aldaba E, Carrascal T, Lecea B, Arrieta A, Zimmerman T, Vidal-Vanaclocha F, Cossío FP. Angew. Chem. Int. Ed. 2005; 44: 2903