Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2021; 32(04): 411-416
DOI: 10.1055/s-0040-1706600
DOI: 10.1055/s-0040-1706600
letter
Zn(OTf)2-Catalyzed 1,6-Conjugate Addition of Benzoxazinones to p-Quinone Methides: Access to 3,3-Diaryl-2-(2-oxo-2H-1,4-benzoxazin-3-yl)propanoic Acid Esters
The authors thank the SERB (research grant No. EMR/2017/000174), New Delhi for financial support.
Abstract
An effective method for the synthesis of 3,3-diaryl-2-(2-oxo-2H-1,4-benzoxazin-3-yl)propanoic acid esters is reported. A novel zinc triflate-catalyzed regioselective 1,6-conjugate addition of vinylogous carbamates to p-quinone methides for accessing the title compounds has been developed. This protocol furnished the hybrid compounds in good to excellent yields. The reaction is rapid and has a broad substrate scope.
Key words
para-quinone methides - vinylogous carbamates - 1,6-addition - regioselectivity - diastereoselectivity - benzoxazinesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1706600.
- Supporting Information
Publication History
Received: 10 August 2020
Accepted after revision: 20 October 2020
Article published online:
19 January 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1 Perry IB, Brewer TF, Sarver PJ, Schultz DM, DiRocco DA, MacMillan DW. C. Nature 2018; 560: 70
- 2 Brahmachari G. RSC Adv. 2016; 6: 64676
- 3 Chen Z, Rong M.-Y, Nie J, Zhu X.-F, Shi B.-F, Ma J.-A. Chem. Soc. Rev. 2019; 48: 4921
- 4 Armaly AM, DePorre YC, Groso EJ, Riehl PS, Schindler CS. Chem. Rev. 2015; 115: 9232
- 5 Mukherjee S, Yang JW, Hoffman S, List B. Chem. Rev. 2007; 107: 5471
- 6a Park C.-H, Ryabova V, Seregin IV, Sromek AW, Gevorgyan V. Org. Lett. 2004; 6: 1159
- 6b Bellina F, Benelli F, Rossi R. J. Org. Chem. 2008; 73: 5529
- 7 Seregin IV, Ryabova V, Gevorgyan V. J. Am. Chem. Soc. 2007; 129: 7742
- 8 Yang Y, Chen L, Zhang Z, Zhang Y. Org. Lett. 2011; 13: 1342
- 9 Sun C.-L, Shi Z.-J. Chem. Rev. 2014; 114: 9219
- 10 Gardner PD, Rafsanjani HS, Rand L. J. Am. Chem. Soc. 1959; 81: 3364
- 11a Decker M. Curr. Med. Chem. 2011; 18: 1464
- 11b Tietze LF, Bell HP, Chandrasekhar S. Angew. Chem. Int. Ed. 2003; 42: 3996
- 11c Xu H, Laraia L, Schneider L, Louven K, Strohmann C, Antonchick AP, Waldmann H. Angew. Chem. Int. Ed. 2017; 56: 11232
- 12a Takao K.-i, Sasaki T, Kozaki T, Yanagisawa Y, Tadano K.-i, Kawashima A, Shinonaga H. Org. Lett. 2001; 3: 4291
- 12b Martin HJ, Magauer T, Mulzer J. Angew. Chem. Int. Ed. 2010; 49: 5614
- 12c Jansen R, Gerth K, Steinmetz H, Reinecke S, Kessler W, Kirschning A, Müller R. Chem. Eur. J. 2011; 17: 7739
- 13a Larsen AA. Nature 1969; 224: 25
- 13b Hamels D, Dansette PM, Hillard EA, Top S, Vessières A, Herson P, Jaouen G, Mansuy D. Angew. Chem. Int. Ed. 2009; 48: 9124
- 14 Lima CG. S, Pauli FP, Costa DC. S, de Souza AS, Forezi LS. M, Ferreira VF, da Carvalho da Silva F. Eur. J. Org. Chem. 2020; 2650
- 15 Schmid TE, Drissi-Amaraoui S, Crévisy C, Baslé O, Mauduit M. Beilstein J. Org. Chem. 2015; 11: 2418
- 16 Goswami P, Singh G, Anand RV. Org. Lett. 2017; 19: 1982
- 17 Zhang B, Liu L, Mao S, Zhou M.-D, Wang H, Li L. Eur. J. Org. Chem. 2019; 3898
- 18 Rathod J, Sharma BM, Mali PS, Kumar P. Synthesis 2017; 49: 5224
- 19 Shirsath SR, Shinde GH, Shaikh AC, Muthukrishnan M. J. Org. Chem. 2018; 83: 12305
- 20a Roiser L, Zielke K, Waser M. Synthesis 2018; 50: 4047
- 20b Zhao S, Zhu Y, Zhang M, Song X, Chang J. Synthesis 2019; 51: 2136
- 20c Torán R, Vila C, Sanz-Marco A, Muñoz MC, Pedro JR, Blay G. Eur. J. Org. Chem. 2020; 627
- 20d Winter M, Schütz R, Eitzinger A, Ofial AR, Waser M. Eur. J. Org. Chem. 2020; 3812
- 20e Ghotekar GS, Shirsath SR, Shaikh AC, Muthukrishnan M. Chem. Commun. 2020; 56: 5022
- 20f Chu W.-D, Zhang L.-F, Bao X, Zhao X.-H, Zeng C, Du J.-Y, Zhang G.-B, Wang F.-X, Ma X.-Y, Fan C.-A. Angew. Chem. Int. Ed. 2013; 52: 9229
- 20g Caruana L, Kniep F, Johansen TK, Poulsen PH, Jørgensen KA. J. Am. Chem. Soc. 2014; 136: 15929
- 21 Li X, Liu N, Zhang H, Knudson SE, Slayden RA, Tonge PJ. Bioorg. Med. Chem. Lett. 2010; 20: 6306
- 22 Bakthadoss M, Kannan D, Srinivasan J, Vinayagam V. Org. Biomol. Chem. 2015; 13: 2870
- 23 Lee CL, Chan KP, Lam Y, Lee YS. Tetrahedron Lett. 2001; 42: 1167
- 24 Böhme TM, Augelli-Szafran CE, Hallak H, Pugsley T, Serpa K, Schwarz RD. J. J. Med. Chem. 2002; 45: 3094 : corrigendum: J. Med. Chem. 2002, 45, 4800
- 25 Mitscher LA, Sharma PN, Chu DT. W, Shen LL, Pernet AG. J. Med. Chem. 1987; 30: 2283
- 26 Birch M, Bradley PA, Gill JC, Kerrigan F, Needham PL. J. Med. Chem. 1999; 42: 3342
- 27 CCDCs 2015516 and 2012570 contain the supplementary crystallographic data for compounds 7 and 16, respectively. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
- 28 3,3-Diaryl-2-(2-oxo-2H-1,4-benzoxazin-3-yl)propanoate Esters 3–21: General Procedure The appropriate benzoxazine 2 (0.5 mmol) was added to a stirred solution of the appropriate p-QM derivative 1 (0.6 mmol) in MeCN (3 mL), and the mixture was stirred at rt. Zn(OTf)2 (2 mol%) was added, and the mixture was stirred at rt until the reaction was complete (TLC). The crude mixture analyzed by 1H NMR to determine the dr of the diastereomers, then purified by chromatography on a short column [silica gel (100–200 mesh), EtOAc–hexanes (5:95)]. Methyl 3-(3,5-Di-tert-butyl-4-hydroxyphenyl)-2-(2-oxo-2H-1,4-benzoxazin-3-yl)-3-phenylpropanoate (3) Reaction time: 5 min. White solid; yield: 5 mg (93%); mp 146.4–147.6 °C (mixture of diastereomers). 1H NMR (400 MHz, CDCl3): δ = 7.78 (d, J = 8.0 Hz, 1 H), 7.49 (d, J = 8.0 Hz, 2 H), 7.43 (t, J = 8.0 Hz, 2 H), 7.34–7.28 (m, 4 H), 7.23–7.13 (m, 4 H), 7.04 (t, J = 8.0 Hz, 1 H), 6.96 (s, 2 H), 5.29 (d, J = 4.0 Hz, 1 H), 5.25 (d, J = 4.0 Hz, 1 H), 5.07–5.02 (m, 1 H), 4.93 (d, J = 12.0 Hz, 1 H), 4.91 (s, 1 H, OH), 3.56 (s, 3 H), 3.47 (s, 1 H), 1.41 (s, 7 H), 1.21 (s, 18 H). 13C NMR (100 MHz, CDCl3): δ = 170.1, 170.0, 154.2, 152.4, 152.1, 146.1, 142.6, 135.8, 135.7, 131.3, 131.2, 131.1, 129.3, 128.6, 127.8, 125.5, 116.3, 52.6, 34.4, 34.2, 30.4, 30.1. HRMS (ESI-TOF): m/z [M + Na] + calcd for C32H35NNaO5: 536.2407; found: 536.2408.
For recent examples, see:
For selected asymmetric reactions, see: