Synlett 2021; 32(07): 708-712
DOI: 10.1055/s-0040-1706682
letter

Expedient Synthesis and Antibacterial Activity of Tetrahydro-1′H-spiro[indoline-3,4′-quinoline]-3′-carbonitrile Derivatives Using Piperidine as Catalyst

Nangagoundan Vinoth
a   Department of Chemistry, Periyar University, Salem-636011, Tamilnadu, India
,
Pullar Vadivel
b   Department of Chemistry, Salem Sowdeswari College, Salem-636010, Tamilnadu, India
,
Appaswami Lalitha
a   Department of Chemistry, Periyar University, Salem-636011, Tamilnadu, India
› Author Affiliations


Abstract

A convenient synthesis of 2′-amino-7′,7′-dimethyl-2,5′-dioxo-1′-(phenylamino)-5′,6′,7′,8′-tetrahydro-1′H-spiro[indoline-3,4′-quinoline]-3′-carbonitrile derivatives has been designed using different substituted isatins, various 5,5-dimethyl-3-(2-phenylhydrazinyl)cyclohex-2-enones (arylhydrazones of dimedone) and malononitrile in ethanol with piperidine as catalyst at room temperature. The structures of the synthesized compounds have been elucidated by various spectroscopic techniques. The selected compounds have also been evaluated for their antibacterial activities against human pathogenic bacteria.

Supporting Information



Publication History

Received: 19 October 2020

Accepted after revision: 21 December 2020

Article published online:
22 January 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Khumalo MR, Maddila SN, Maddila S, Jonnalagadda SB. RSC Adv. 2019; 9: 30768
  • 2 Briones JF, Basarab GS. Chem. Commun. 2016; 52: 8541
  • 3 Damera K, Yu B, Wang B. J. Org. Chem. 2015; 80: 5457
  • 4 Ebenso EE, Obot BI, Murulana LC. Int. J. Electrochem. Sci. 2010; 5: 1574
  • 5 Shang X, Morris-Natschke S, Liu Y, Guo X, Xu X, Goto M, Li J, Yang G, Lee K. Med. Res. Rev. 2018; 38: 775
  • 6 Cretton S, Dorsaz S, Azzollini A, Favre-Godal Q, Marcourt L, Ebrahimi SN, Voinesco F, Michellod E, Sanglard D, Gindro K, Wolfender J, Cuendet M, Christen P. J. Nat. Prod. 2016; 79: 300
  • 7 Aribi F, Panossian A, Vors J, Pazenok S, Leroux F. Eur. J. Org. Chem. 2018; 3792
  • 8 Luo Y, He Y, Fan Q. Chem. Rec. 2016; 16: 2697
  • 9 Kang SK, Woo J, Lee SE, Kim YK, Yoon SS. Mol. Cryst. Liq. Cryst. 2019; 685: 114
  • 10 Kumar P, Garg V, Kumar M, Verma AK. Chem. Commun. 2019; 55: 12168
  • 11 Luongo G, Thorsen G, Ostman C. Anal. Bioanal. Chem. 2014; 406: 2747
  • 12 Han C, Li H, Shi R, Zhang T, Tong J, Li J, Li B. J. Mater. Chem. A 2019; 7: 23378
  • 13 Anjali Anjali, Pathak D, Singh D. Int. J. Pharm. Sci. Res. 2016; 7: 1
  • 14 Wu C, Wang J, Shen J, Zhang C, Wu Z, Zhou H. Tetrahedron 2017; 73: 5715
  • 15 Prajapati SM, Patel KD, Vekariya RH, Panchal SN, Patel HD. RSC Adv. 2014; 4: 24463
  • 16 Rajamanickam G, Selvaraj J, Selvaraj S, Rajendran T, Sarker MM. R. J. Chem. Pharmaceut. Sci. 2015; 8: 655
  • 17 Thomas KD, Adhikari AV, Telkar S, Chowdhury IH, Mahmood R, Pal NK, Row G, Sumesh E. Eur. J. Med. Chem. 2011; 46: 5283
  • 18 Ahmed N, Brahmbhatt KG, Sabde S, Mitra D, Singh IP, Bhutani KK. Bioorg. Med. Chem. 2010; 18: 2872
  • 19 Thomas KD, Adhikari AV, Shetty NS. Eur. J. Med. Chem. 2010; 45: 3803
  • 20 Wen X, Wang S, Liu D, Gong G, Quan Z. Med. Chem. Res. 2015; 24: 2591
  • 21 Kaur K, Jain M, Reddy RP, Jain R. Eur. J. Med. Chem. 2010; 45: 3245
  • 22 Abonia R, Insuasty D, Castillo J, Insuasty B, Quiroga J, Nogueras M, Cobo J. Eur. J. Med. Chem. 2012; 57: 29
  • 23 Meia G, Shi F. Chem. Commun. 2018; 54: 6607
  • 24 Fang X, Wang C. Org. Biomol. Chem. 2018; 16: 2591
  • 25 You Y, Cui B, Zhou M, Zuo J, Zhao J, Xu X, Zhang X, Yuan W. J. Org. Chem. 2015; 80: 5951
  • 26 Cheng D, Ishihara Y, Tan B, Barbas CF. III. ACS Catal. 2014; 4: 743
  • 27 Iaroshenok VO, Dudkin S, Sosnovskikh VY, Villinger A, Langer P. Synthesis 2013; 45: 971
  • 28 Miller KA, Williams RM. Chem. Soc. Rev. 2009; 38: 3160
  • 29 Yu F, Huang N, Ni H, Fan J, Yan S, Lin J. Green Chem. 2013; 15: 453
  • 30 Ding K, Lu YP, Nikolovska-Coleska Z, Wang GP, Qiu S, Shangary S, Gao W, Qin DG, Stuckey J, Krajewski K, Roller PP, Wang S. J. Med. Chem. 2006; 49: 3432
  • 31 Prasanna P, Balamurugan K, Perumal S, Yogeeswari P, Sriram D. Eur. J. Med. Chem. 2010; 45: 5653
  • 32 Nandakumar A, Thirumurugan P, Perumal PT, Vembu P, Ponnuswamy MN, Ramesh P. Bioorg. Med. Chem. Lett. 2010; 20: 4252
  • 33 Maheswari SU, Balamurugan K, Perumal S, Yogeeswari P, Sriram D. Bioorg. Med. Chem. Lett. 2010; 20: 7278
  • 34 Thangamani A. Eur. J. Med. Chem. 2010; 45: 6120
  • 35 Karal N, Guzel O, Ozsoy N, Ozbey S, Salman A. Eur. J. Med. Chem. 2010; 45: 1068
  • 36 Zhu Q, Zhang Y, Xu M, Sun X, Yang X, Shi F. J. Org. Chem. 2016; 81: 7898
  • 37 Mei G, Li D, Zhou G, Shi Q, Cao Z, Shi F. Chem. Commun. 2017; 53: 10030
  • 38 Zhang Y.-C, Jiang F, Shi F. Acc. Chem. Res. 2020; 53: 425
  • 39 Yang W.-W, Ye Y.-F, Chen L.-L, Fu J.-Y, Zhu J.-Y, Wang Y.-B. J. Org. Chem. 2020; 86: 169
  • 40 Singh GS, Desta ZY. Chem. Rev. 2012; 112: 6104
  • 41 Sheng F, Wang J, Tan W, Zhang Y, Shi F. Org. Chem. Front. 2020; 7: 3967
  • 42 Synthesis of Tetrahydro-1′H-spiro[indoline-3,4′-quinoline]-3′-carbonitrile Derivatives; General Procedure: All the chemicals used for this study were commercially available and were freshly used after being purified by standard procedures. All the conventional reactions were performed with 50 mL RB flasks. TLC was performed on Merck pre-coated aluminum sheets of 60 F-254 silica gel plates with visualization by UV-light using a 1:1 mixture of ethyl acetate and n-hexane as solvent system. Melting points were determined in capillary tubes with a Büchi melting point BB-545 apparatus and are uncorrected. 1H and 13C NMR spectra were recorded with Bruker 400 MHz high-resolution NMR spectrometers. DMSO-d 6 was used as a solvent for the NMR spectral measurements and the spectra were recorded in parts per million with TMS as internal standard. Spectral Data for Tetrahydro-1′H-spiro[indoline-3,4′-quinoline]-3′-carbonitrile Derivatives
    2′-Amino-2,5′-dioxo-1′-(phenylamino)-5′,6′,7′,8′-tetrahydro-1′H-spiro[indoline-3,4′-quinoline]-3′-carbonitrile (6a):
    Yield: 87%; white solid; mp 230–232 °C. IR (KBr): 3413.80, 3261.14, 3030.31, 2952.89, 2184.18, 1717.19, 16630.76 cm–1. 1H NMR (400 MHz, DMSO-d 6): δ = 10.22 (s, 1 H, -NH), 8.79 (s, 1 H, -NH), 7.38–6.42 (m, 11 H, Ar-H and –NH2), 2.19–1.91 (m, 4 H, 2 × CH2), 0.93–0.81 (m, 6 H, 2 × CH3). 13C NMR (100 MHz, DMSO-d 6): δ = 27.17, 28.67 (C(CH3)2), 31.17 (-CH), 38.36 (-CH2), 49.60 (CH2-CO), 58.74 (C-CN), 109.39, 110.73, 111.03, 120.79, 121.89, 122.02, 128.16, 130.10, 137.09, 142.15, 153.09, 179.82, 190.10 (Ar-C). 2′-Amino-6-methoxy-2,5′-dioxo-1′-(phenylamino)-5′,6′,7′,8′-tetrahydro-1′H-spiro[indoline-3,4′-quinoline]-3′-carbonitrile (6b): Yield: 80%; white solid; mp 226–228 °C; IR (KBr): 3429.77, 3248.56, 3030.35, 2957.27, 2186.55, 1723.40, 1650.66 cm–1. 1H NMR (400 MHz, DMSO-d 6): δ = 10.05 (s, 1 H, -NH), 8.80 (s, 1 H, -NH), 7.35–6.43 (m, 10 H, Ar-H and –NH2), 3.66 (s, 3 H, OCH3), 2.19–1.93 (m, 4 H, 2 × CH2), 0.93–0.74 (m, 6 H, 2 × CH3). 13C NMR (100 MHz, DMSO-d 6): δ = 27.13, 28.56 (C(CH3)2), 32.18 (-CH), 38.34 (-CH2), 49.41 (CH2-CO), 55.63 (-OCH3), 58.80 (C-CN), 109.55, 111.02, 120.66, 129.89, 135.53, 147.25, 155.24, 179.67 (Ar-C). 2′-Amino-6-chloro-2,5′-dioxo-1′-(phenylamino)-5′,6′,7′,8′-tetrahydro-1′H-spiro[indoline-3,4′-quinoline]-3′-carbonitrile (6c): Yield: 76%; white solid; mp 230–232 °C; IR (KBr): 3327.35, 3096.69, 2958.88, 2876.92, 1722.43, 1691.16, 1644.67 cm–1. 1H NMR (400 MHz, DMSO-d 6): δ = 10.99 (s, 1 H, -NH), 8.86 (s, 1 H, -NH), 7.44–6.65 (m, 10 H, Ar-H and –NH2), 1.94–1.84 (m, 4 H, 2 × CH2), 0.94–0.80 (m, 6 H, 2 × CH3). 13C NMR (100 MHz, DMSO-d 6): δ = 26. 44, 27.04, 28.73 (C(CH3)2), 33.68 (-CH2), 50.63 (CH2-CO), 59.10 (C-CN), 100.59, 108.51, 111.70, 112.99, 121.99, 126.89, 133.56, 144.76, 167.54, 180.32, 194.66, 203.54 (Ar-C). 2′-Amino-6-bromo-2,5′-dioxo-1′-(phenylamino)-5′,6′,7′,8′-tetrahydro-1′H-spiro[indoline-3,4′-quinoline]-3′-carbonitrile (6d): Yield: 79%; white solid; mp 232–234 °C; IR (KBr): 3422.48, 3246.68, 3029.36, 2954.58, 2186.34, 1724.50 cm–1. 1H NMR (400 MHz, DMSO-d 6): δ = 10.04 (s, 1 H, -NH), 8.94 (s, 1 H, -NH), 7.50–6.58 (m, 9 H, Ar-H and –NH2), 2.16–2.03 (m, 4 H, 2 × CH2), 0.94–0.82 (m, 6 H, 2 × CH3). 13C NMR (100 MHz, DMSO-d 6): δ = 27.65, 28.01 (C(CH3)2), 38.18 (-CH2), 110.26, 111.55, 113.53, 119.10, 125.91, 130.78, 139.35, 146.42, 155.81, 179.41, 194.33 (Ar-C). 2′-Amino-2,5′-dioxo-1′-(phenylamino)-6-(trifluoromethoxy)-5′,6′,7′,8′-tetrahydro-1′H-spiro[indoline-3,4′-quinoline]-3′-carbonitrile (6e): Yield: 83%; white solid; mp 230–232 °C; IR (KBr): 3477.11, 3361.15, 3210.53, 3111.86, 3026.47, 2959.66, 2185.02, 1707.70 cm–1. 1H NMR (400 MHz, DMSO-d 6): δ = 10.45 (s, 1 H, -NH), 8.82 (s, 1 H, -NH), 7.33–6.56 (m, 10 H, Ar-H and –NH2), 2.12–1.94 (m, 4 H, 2 × CH2), 0.93–0.71 (m, 6 H, 2 × CH3). 13C NMR (100 MHz, DMSO-d 6): 26.84, 27.19, 28.51 (C(CH3)2), 38.34 (-CH2), 49.44 (CH2-CO), 57.80 (C-CN), 110.04, 111.97, 116.14, 119.15, 120.71, 121.29, 129.90, 138.52, 141.26, 146.82, 147.13, 155.88, 179.92, 194.26 (Ar-C). 2′-Amino-1′-((4-chlorophenyl)amino)-6-methoxy-2,5′-dioxo-5′,6′,7′,8′-tetrahydro-1′H-spiro[indoline-3,4′-quinoline]-3′-carbonitrile (6f): Yield: 85%; white solid; mp 224–226 °C; IR (KBr): 3414.56, 3273.42, 3032.56, 2953.14, 2185.96, 1717.59, 1632.96 cm–1. 1H NMR (400 MHz, DMSO-d 6): δ = 10.66 (s, 1 H, -NH), 8.93 (s, 1 H, -NH), 7.39–6.47 (m, 9 H, Ar-H and –NH2), 3.66 (s, 3 H, OCH3), 2.10–1.95 (m, 4 H, 2 × CH2), 0.94–0.77 (m, 6 H, 2 × CH3). 13C NMR (100 MHz, DMSO-d 6): δ = 27.30, 28.57 (C(CH3)2), 39.35 (-CH2), 49.39 (CH2-CO), 55.66 (-OCH3), 58.89 (C-CN), 109.58, 110.30, 111.16, 119.30, 124.08, 129.68, 135.57, 138.28, 145.93, 152.71, 155.04, 179.63, 194.10 (Ar-C). 2′-Amino-1′-((4-chlorophenyl)amino)-7′,7′-dimethyl-2,5′-dioxo-5′,6′,7′,8′-tetrahydro-1′H-spiro[indoline-3,4′-quinoline]-3′-carbonitrile (6g): Yield: 88%; white solid; mp 218–220 °C; IR (KBr): 3835.27, 3740.79, 3647.38, 3588.71, 3415.87, 3274.02, 3022.86, 2955.53, 2365.09, 2187.03, 1717.43, 1633.23 cm–1. 1H NMR (400 MHz, DMSO-d 6): δ = 10.23 (s, 1 H, -NH), 8.92 (s, 1 H, -NH), 7.43–6.48 (m, 10 H, Ar-H and –NH2), 2.14–1.92 (m, 4 H, 2 × CH2), 0.94–0.76 (m, 6 H, 2 × CH3). 13C NMR (100 MHz, DMSO-d 6): 27.27, 28.61 (C(CH3)2), 32.21, 38.31 (-CH2), 48.98 (CH2-CO), 58.88 (C-CN), 109.41, 110.86, 113.48, 122.04, 128.15, 129.69, 142.15, 145.93, 146.15, 152.68, 179.88 (Ar-C). 2′-Amino-1′-((4-bromophenyl)amino)-7′,7′-dimethyl-2,5′-dioxo-5′,6′,7′,8′-tetrahydro-1′H-spiro[indoline-3,4′-quinoline]-3′-carbonitrile (6h): Yield: 85%; white solid; mp 218–220 °C; IR (KBr): 3834.72, 3740.38, 3670.97, 3647.88, 3418.33, 3252.46, 2952.41, 2867.11, 2353.77, 2187.88, 1720.88 cm–1. 1H NMR (400 MHz, DMSO-d 6): δ = 10.23 (s, 1 H, -NH), 8.93 (s, 1 H, -NH), 7.55–6.48 (m, 10 H, Ar-H and –NH2), 2.14–1.92 (m, 4 H, 2 × CH2), 0.94–0.77 (m, 6 H, 2 × CH3). 13C NMR (100 MHz, DMSO-d 6): δ = 27.24, 28.59 (C(CH3)2), 32.21, 38.31 (-CH2), 48.98 (CH2-CO), 58.88 (C-CN), 109.41, 110.83, 111.15, 111.68, 113.96, 119.30, 121.90, 122.05, 123.14, 128.16, 132.52, 136.98, 137.24, 142.14, 146.34, 152.65, 155.03, 179.77, 194.10 (Ar-C). 2′-Amino-1′-((4-bromophenyl)amino)-6-methoxy-7′,7′-dimethyl-2,5′-dioxo-5′,6′,7′,8′-tetrahydro-1′H-spiro[indoline-3,4′-quinoline]-3′-carbonitrile (6i): Yield: 77%; white solid; mp 222–224 °C; IR (KBr): 3414.69, 3275.63, 3034.04, 2953.82, 2185.81, 1717.55, 1678.20, 1633.28 cm–1. 1H NMR (400 MHz, DMSO-d 6): δ = 10.06 (s, 1 H, -NH), 8.93 (s, 1 H, -NH), 7.51–6.47 (m, 9 H, Ar-H and –NH2), 3.63 (s, 3 H, OCH3), 2.15–1.95 (m, 4 H, 2 × CH2), 1.08–0.84 (m, 6 H, 2 × CH3). 13C NMR (100 MHz, DMSO-d 6): δ = 27.28, 28.55 (C(CH3)2), 32.23, 49.39 (CH2-CO), 55.67 (-OCH3), 58.85 (C-CN), 109.58, 109.74, 110.33, 115.15, 112.39, 113.97, 132.50, 135.57, 138.28, 146.34, 152.68, 155.02, 179.63, 194.10 (Ar-C). 2′-Amino-6-chloro-1′-((4-chlorophenyl)amino)-7′,7′-dimethyl-2,5′-dioxo-5′,6′,7′,8′-tetrahydro-1′H-spiro[indoline-3,4′-quinoline]-3′-carbonitrile (6j): Yield: 79%; white solid; mp 232–234 °C; IR (KBr): 3914.60, 3790.02, 3702.05, 3423.01, 3249.96, 3030.35, 2956.62, 2355.64, 2186.71, 1723.46, 1654.28, 1630.26 cm–1. 1H NMR (400 MHz, DMSO-d 6): δ = 10.39 (s, 1 H, -NH), 8.98 (s, 1 H, -NH), 7.39–6.58 (m, 9 H, Ar-H and –NH2), 2.15–2.03 (m, 4 H, 2 × CH2), 0.94–0.80 (m, 6 H, 2 × CH3). 13C NMR (100 MHz, DMSO-d 6): δ = 27.69, 28.07 (C(CH3)2), 32.31, 38.20 (-CH2), 49.29 (CH2-CO), 58.05 (C-CN), 110.22, 113.66, 123.20, 124.15, 125.79, 127.91, 128.08, 129.68, 138.96, 139.23, 141.30, 141.37, 145.89, 152.93, 153.13, 155.60, 179.52, 194.30 (Ar-C). 2′-Amino-1′-((4-bromophenyl)amino)-6-chloro-7′,7′-dimethyl-2,5′-dioxo-5′,6′,7′,8′-tetrahydro-1′H-spiro[indoline-3,4′-quinoline]-3′-carbonitrile (6k): Yield: 76%; white solid; mp 228–230 °C; IR (KBr): 3423.43, 3242.89, 2956.16, 2871.31, 2186.75, 1725.02, 1654.56, 1630.70 cm–1. 1H NMR (400 MHz, DMSO-d 6): δ = 10.39 (s, 1 H, -NH), 8.94 (s, 1 H, -NH), 7.51–6.58 (m, 9 H, Ar-H and –NH2), 2.15–2.03 (m, 4 H, 2 × CH2), 0.94 (m, 6 H, 2 × CH3). 13C NMR (100 MHz, DMSO-d 6): δ = 27.65, 28.27 (C(CH3)2), 32.30, 38.19 (-CH2), 49.29 (CH2-CO), 58.02 (C-CN), 110.21, 111.73, 114.12, 123.20, 125.79, 127.92, 128.08, 132.50, 132.65, 138.94, 139.22, 141.29, 146.29, 152.90, 153.09, 155.57, 179.52, 194.31 (Ar-C).