Synthesis 2020; 52(18): 2579-2599
DOI: 10.1055/s-0040-1707101
review
© Georg Thieme Verlag Stuttgart · New York

Non-Classical Amide Bond Formation: Transamidation and Amidation of Activated Amides and Esters by Selective N–C/O–C Cleavage

,
Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA   Email: michal.szostak@rutgers.edu
› Author Affiliations
The National Science Foundation (CAREER CHE-1650766) is gratefully acknowledged for support
Further Information

Publication History

Received: 26 February 2020

Accepted after revision: 27 March 2020

Publication Date:
15 May 2020 (online)


Abstract

In the past several years, tremendous advances have been made in non-classical routes for amide bond formation that involve transamidation and amidation reactions of activated amides and esters. These new methods enable the formation of extremely valuable amide bonds via transition-metal-catalyzed, transition-metal-free, or metal-free pathways by exploiting chemoselective acyl C–X (X = N, O) cleavage under mild conditions. In a broadest sense, these reactions overcome the formidable challenge of activating C–N/C–O bonds of amides or esters by rationally tackling nN → π*C=O delocalization in amides and nO → π*C=O donation in esters. In this account, we summarize the recent remarkable advances in the development of new methods for the synthesis of amides with a focus on (1) transition-metal/NHC-catalyzed C–N/C–O bond activation, (2) transition-metal-free highly selective cleavage of C–N/C–O bonds, (3) the development of new acyl-transfer reagents, and (4) other emerging methods.

1 Introduction

2 Transamidation of Amides

2.1 Transamidation by Metal–NHC Catalysis (Pd–NHC, Ni–NHC)

2.2 Transition-Metal-Free Transamidation via Tetrahedral Intermediates

2.3 Reductive Transamidation

2.4 New Acyl-Transfer Reagents

2.5 Tandem Transamidations

3 Amidation of Esters

3.1 Amidation of Esters by Metal–NHC Catalysis (Pd–NHC, Ni–NHC)

3.2 Transition-Metal-Free Amidation of Esters via Tetrahedral Intermediates

3.3 Reductive Amidation of Esters

4 Transamidations of Amides by Other Mechanisms

5 Conclusions and Outlook

 
  • References

    • 1a The Amide Linkage: Structural Significance in Chemistry, Biochemistry and Materials Science. Greenberg A, Breneman CM, Liebman JF. Wiley-VCH; New York: 2003
    • 1b Pattabiraman VR, Bode JW. Nature 2011; 480: 471
    • 1c Ruider S, Maulide N. Angew. Chem. Int. Ed. 2015; 54: 13856
    • 2a Larock RC. Comprehensive Organic Transformations, 2nd ed. Wiley; New York: 1999
    • 2b The Chemistry of Amides. In Patai’s Chemistry of Functional Groups. Zabicky J. Interscience; New York: 1970

      For representative reviews on amide bond formation, see:
    • 4a Marcia de Figueiredo R, Suppo JS, Campagne JM. Chem. Rev. 2016; 116: 12029
    • 4b Ojeda-Porras A, Gamba-Sanchez D. J. Org. Chem. 2016; 81: 11548
    • 4c Dunetz JR, Magano J, Weisenburger GA. Org. Process Res. Dev. 2016; 20: 140
    • 4d Allen CL, Williams JM. J. Chem. Soc. Rev. 2011; 40: 3405
    • 4e Valeur E, Bradley M. Chem. Soc. Rev. 2009; 38: 606
    • 4f Montalbetti CA. G. N, Falque V. Tetrahedron 2005; 61: 10827
    • 4g Lanigan RM, Sheppard TD. Eur. J. Org. Chem. 2013; 7453

    • For a recent review on transamidations, see:
    • 4h Acosta-Guzmán P, Mateus-Gómez A, Gamba-Sánchez D. Molecules 2018; 23: 2382

    • For a classic amidation of esters using aluminum amides, see:
    • 4i Basha A, Lipton M, Weinreb SM. Tetrahedron Lett. 1977; 18: 4171

    • For a recent example of a hydroxy-directed amidation of esters, see:
    • 4j Tsuji H, Yamamoto H. J. Am. Chem. Soc. 2016; 138: 14218

    • For a recent example of catalytic amidation using TFE as a promoter, see:
    • 4k Caldwell N, Jamieson N, Simpson I, Watson AJ. B. Chem. Commun. 2015; 51: 9495
    • 5a Brown DG, Boström J. J. Med. Chem. 2016; 59: 4443
    • 5b Blakemore DC, Castro L, Churcher I, Rees DC, Thomas AW, Wilson DM, Wood A. Nat. Chem. 2018; 10: 383
  • 6 Jarvis LM. Chem. Eng. News 2019; 97: 11
  • 8 For a recent review on activation of amides by tetrahedral intermediates, see: Li G, Szostak M. Chem. Rec. 2020; 20 DOI: in press; 10.1002/tcr.201900072.

    • For selected studies on activation of amide bonds, see:
    • 10a Kemnitz CR, Loewen MJ. J. Am. Chem. Soc. 2007; 129: 2521
    • 10b Mujika JI, Mercero JM, Lopez X. J. Am. Chem. Soc. 2005; 127: 4445
    • 10c Wang B, Cao Z. Chem. Eur. J. 2011; 17: 11919
    • 10d Mujika JI, Matxain JM, Eriksson LA, Lopez X. Chem. Eur. J. 2006; 12: 7215
    • 10e Kirby AJ, Komarov IV, Wothers PD, Feeder N. Angew. Chem. Int. Ed. 1998; 37: 785
    • 10f Tani K, Stoltz BM. Nature 2006; 441: 731
    • 10g Greenberg A, Moore DT, DuBois TD. J. Am. Chem. Soc. 1996; 118: 8658

      For selected studies on amide bond destabilization pertinent to N–C activation, see:
    • 11a Pace V, Holzer W, Meng G, Shi S, Lalancette R, Szostak R, Szostak M. Chem. Eur. J. 2016; 22: 14494
    • 11b Szostak R, Shi S, Meng G, Lalancette R, Szostak M. J. Org. Chem. 2016; 81: 8091
  • 12 Meng G, Lei P, Szostak M. Org. Lett. 2017; 19: 2158
  • 13 Shi S, Szostak M. Chem. Commun. 2017; 53: 10584
  • 14 Zhou T, Li G, Nolan SP, Szostak M. Org. Lett. 2019; 21: 3304
  • 15 Li G, Zhou T, Poater A, Cavallo L, Nolan SP, Szostak M. Catal. Sci. Technol. 2020; 10: 710

    • For selected reviews on Pd–NHC catalysis, see:
    • 16a Marion N, Nolan SP. Acc. Chem. Res. 2008; 41: 1440
    • 16b Fortman GC, Nolan SP. Chem. Soc. Rev. 2011; 40: 5151
    • 16c Froese RD. J, Lombardi C, Pompeo M, Rucker RP, Organ MG. Acc. Chem. Res. 2017; 50: 2244
    • 16d Valente C, Calimsiz S, Hoi KH, Mallik D, Sayah M, Organ MG. Angew. Chem. Int. Ed. 2012; 51: 3314
    • 16e Hopkinson MN, Richter C, Schedler M, Glorius F. Nature 2014; 510: 485
    • 16f Zhao Q, Meng G, Nolan SP, Szostak M. Chem. Rev. 2020; 120: 1981
  • 17 Baker EL, Yamano MM, Zhou Y, Anthony SM, Garg NK. Nat. Commun. 2016; 7: 11554
  • 18 Dander JE, Weires NA, Garg NK. Org. Lett. 2016; 18: 3934
  • 19 Dander JE, Baker EL, Garg NK. Chem. Sci. 2017; 8: 6433
  • 20 Meng G, Kakalis L, Nolan SP, Szostak M. Tetrahedron Lett. 2019; 60: 378 ; and references cited therein
  • 21 Liu Y, Shi S, Achtenhagen M, Liu R, Szostak M. Org. Lett. 2017; 19: 1614
  • 22 Li G, Szostak M. Nat. Commun. 2018; 9: 4165
  • 23 Li G, Ji CL, Hong X, Szostak M. J. Am. Chem. Soc. 2019; 141: 11161
  • 24 Rahman MM, Li G, Szostak M. J. Org. Chem. 2019; 84: 12091
  • 25 For another pertinent example, see: Ramkumar R, Chandrasekaran S. Synthesis 2019; 51: 921
  • 26 Verho O, Pourghasemi Lati M, Oschmann M. J. Org. Chem. 2018; 83: 4464
  • 27 Rouquet G, Chatani N. Angew. Chem. Int. Ed. 2013; 52: 11726
  • 28 Biswas S, Bheemireddy NR, Bal M, Van Steijvoort BF, Maes BU. W. J. Org. Chem. 2019; 84: 13112
  • 29 Nicke L, Horx P, Harms K, Geyer A. Chem. Sci. 2019; 10: 8634
    • 30a Larsen MB, Herzog SE, Quilter HC, Hillmyer MA. ACS Macro Lett. 2018; 7: 122
    • 30b Larsen MB, Wang S.-J, Hillmyer MA. J. Am. Chem. Soc. 2018; 140: 11911
  • 31 Gui J, Pan CM, Jin Y, Qin T, Lo JC, Lee BJ, Spergel SH, Mertzman ME, Pitts WJ, La Cruz TE, Schmidt MA, Darvatkar N, Natarajan SR, Baran PS. Science 2015; 348: 886 ; and references cited therein
  • 32 Cheung CW, Ploeger ML, Hu X. ACS Catal. 2017; 7: 7092
  • 33 Cheung CW, Ma JA, Hu X. J. Am. Chem. Soc. 2018; 140: 6789
  • 35 For a review on N-acyl-glutarimides in cross-coupling, see: Meng G, Szostak M. Eur. J. Org. Chem. 2018; 2352
  • 36 Liu Y, Achtenhagen M, Liu R, Szostak M. Org. Biomol. Chem. 2018; 16: 1322
  • 37 For resonance and energetic properties of N-acyl-glutarimides, see: Szostak R, Szostak M. Org. Lett. 2018; 20: 1342
  • 38 For the early report on N-acyl-succinimides in N–C cross-coupling, see: Shi S, Szostak M. Synthesis 2017; 49: 3602

    • For the early report on N-acyl-saccharins in N–C cross-coupling, see:
    • 39a Liu C, Meng G, Liu Y, Liu R, Lalancette R, Szostak R, Szostak M. Org. Lett. 2016; 18: 4194
    • 39b For a concomitant report, see: Wu H, Li Y, Cui M, Jian J, Zeng Z. Adv. Synth. Catal. 2016; 358: 3876
  • 40 Subramani M, Rajendran SK. Eur. J. Org. Chem. 2019; 3677
  • 41 For N,N-Boc2-amides, see: Meng G, Shi S, Lalancette R, Szostak R, Szostak M. J. Am. Chem. Soc. 2018; 140: 727
  • 42 For ‘most twisted acyclic amides’, see: Liu C, Shi S, Liu Y, Liu R, Lalancette R, Szostak R, Szostak M. Org. Lett. 2018; 20: 7771
  • 43 Hu F, Lalancette R, Szostak M. Angew. Chem. Int. Ed. 2016; 55: 5062
  • 44 For a review on twisted bridged lactams, see: Szostak R, Szostak M. Molecules 2019; 24: 274 ; and references cited therein
    • 45a For σ N–C bond hydrogenolysis, see ref. 43.
    • 45b For σ N–C bond scission, see: Hu F, Nareddy P, Lalancette R, Jordan F, Szostak M. Org. Lett. 2017; 19: 2386
    • 45c For cross-metathesis, see: Zhao Q, Lalancette R, Szostak R, Szostak M. ACS Catal. 2020; 10: 737

    • For recent elegant applications of opening of this class of bridged lactams in polymerization, see:
    • 45d Fu L, Xu M, Yu J, Gutekunst WR. J. Am. Chem. Soc. 2019; 141: 2906
    • 45e Xu M, Bullard KK, Nicely AM, Gutekunst WR. Chem. Sci. 2019; 10: 9729
  • 47 Bollu A, Sharma NK. J. Org. Chem. 2019; 84: 5596
  • 48 Drageset A, Bjørsvik HR. Eur. J. Org. Chem. 2018; 4436
  • 49 For twisted N-acylhydantoins, see: Szostak R, Liu C, Lalancette R, Szostak M. J. Org. Chem. 2018; 83: 14676
  • 50 Guissart C, Barros A, Rosa Barata L, Evano G. Org. Lett. 2018; 20: 5098
  • 51 Kennington SC. D, Taylor AJ, Romea P, Urpi F, Aullon G, Font-Bardia M, Ferre L, Rodrigalvarez J. Org. Lett. 2019; 21: 305
  • 52 Funder ED, Trads JB, Gothelf KV. Org. Biomol. Chem. 2015; 13: 185

    • For cooperative catalysis in acyl N–C cross-coupling, see:
    • 53a Meng G, Shi S, Szostak M. ACS Catal. 2016; 6: 7335

    • For cooperative catalysis in decarbonylative N–C cross-coupling, see:
    • 53b Meng G, Szostak M. ACS Catal. 2017; 7: 7251
  • 54 Guo W, Huang J, Wu H, Liu T, Luo Z, Jian J, Zeng Z. Org. Chem. Front. 2018; 5: 2950
  • 55 Luo Z, Wu H, Li Y, Chen Y, Nie J, Lu S, Zhu Y, Zeng Z. Adv. Synth. Catal. 2019; 361: 4117
  • 56 Xiong L, Deng R, Liu T, Luo Z, Wang Z, Zhu XF, Wang H, Zeng Z. Adv. Synth. Catal. 2019; 361: 5383
    • 57a Liebman J, Greenberg A. Biophys. Chem. 1974; 1: 222
    • 57b For a correlation between resonance and activation of amides and esters in C–N/C–O cross-coupling, see: Lei P, Meng G, Shi S, Ling Y, An J, Szostak R, Szostak M. Chem. Sci. 2017; 8: 6525
  • 58 Ben Halima T, Vandavasi JK, Shkoor M, Newman SG. ACS Catal. 2017; 7: 2176
  • 59 Dardir AH, Melvin PR, Davis RM, Hazari N, Mohadjer Beromi M. J. Org. Chem. 2018; 83: 469
  • 60 Melvin PR, Nova A, Balcells D, Dai W, Hazari N, Hruszkewycz DP, Shah HP, Tudge MT. ACS Catal. 2015; 5: 5596
    • 61a De la Fuente-Olvera AA, Suárez-Castillo OR, Mendoza-Espinosa D. Eur. J. Inorg. Chem. 2019; 4879
    • 61b For PEPPSI-type complexes, see: Rendón-Nava D, Álvarez-Hernández A, Rheingold AL, Suárez-Castillo OR, Mendoza-Espinosa D. Dalton Trans. 2019; 48: 3214
  • 62 Hie L, Fine Nathel NF, Hong X, Yang YF, Houk KN, Garg NK. Angew. Chem. Int. Ed. 2016; 55: 2810
  • 63 Ben Halima T, Masson-Makdissi J, Newman SG. Angew. Chem. Int. Ed. 2018; 57: 12925
  • 64 Zheng YL, Newman SG. ACS Catal. 2019; 9: 4426
  • 65 Rzhevskiy SA, Ageshina AA, Chesnokov GA, Gribanov PS, Topchiy MA, Nechaev MS, Asachenko AF. RSC Adv. 2019; 9: 1536
  • 66 Cheung CW, Ploeger ML, Hu X. Nat. Commun. 2017; 8: 14878
  • 67 Cheung CW, Shen N, Wang SP, Ullah A, Hu X, Ma JA. Org. Chem. Front. 2019; 6: 756
  • 68 Ling L, Chen C, Luo M, Zeng X. Org. Lett. 2019; 21: 1912
  • 69 Mishra A, Singh S, Srivastava V. Asian J. Org. Chem. 2018; 7: 1600
  • 70 Mishra A, Chauhan S, Verma P, Singh S, Srivastava V. Asian J. Org. Chem. 2019; 8: 853
  • 71 Fiore VA, Maas G. Tetrahedron 2019; 75: 3586
  • 72 For N-Tf-amides, see: Shi S, Lalancette R, Szostak R, Szostak M. Org. Lett. 2019; 21: 1253
    • 73a Sureshbabu P, Azeez S, Chaudhary P, Kandasamy J. Org. Biomol. Chem. 2019; 17: 845

    • See also:
    • 73b Yedage SL, Bhanage BM. J. Org. Chem. 2017; 82: 5769
  • 74 Ghosh T, Jana S, Dash J. Org. Lett. 2019; 21: 6690
  • 75 Yu S, Shin T, Zhang M, Xia Y, Kim H, Lee S. Org. Lett. 2018; 20: 7563
  • 76 Yu S, Ho Song K, Lee S. Asian J. Org. Chem. 2019; 8: 1613
  • 77 Tian Q, Gan Z, Wang X, Li D, Luo W, Wang H, Dai Z, Yuan J. Molecules 2018; 23: 2234
  • 78 Patel KP, Gayakwad EM, Patil VV, Shankarling GS. Adv. Synth. Catal. 2019; 361: 2107
  • 79 Marcano DC, Kosynkin DV, Berlin JA, Sinitskii A, Sun Z, Sleasarev A, Alemany LB, Lu W, Tour JM. ACS Nano 2010; 4: 4806
  • 80 Hu F, Patel M, Luo F, Flach C, Mendelsohn R, Garfunkel E, He H, Szostak M. J. Am. Chem. Soc. 2015; 137: 14473
  • 81 Bhattacharya S, Ghosh P, Basu B. Tetrahedron Lett. 2018; 59: 899
  • 82 Sheng H, Zeng R, Wang W, Luo S, Feng Y, Liu J, Chen W, Zhu M, Guo Q. Adv. Synth. Catal. 2017; 359: 302
    • 83a Han C, Lee JP, Lobkovsky E, Porco JA. Jr. J. Am. Chem. Soc. 2005; 127: 10039
    • 83b Morimoto H, Fujiwara R, Shimizu Y, Morisaki K, Ohshima T, Shibasaki M. Org. Lett. 2014; 16: 2018
    • 83c Brewitz L, Arteaga FA, Yin L, Alagiri K, Kumagai N. J. Am. Chem. Soc. 2015; 137: 15929
    • 83d Li Z, Wang C, Wang Y, Yuan D, Yao Y. Asian J. Org. Chem. 2018; 7: 810
  • 84 Noshita M, Shimizu Y, Morimoto H, Akai S, Hamashima Y, Ohneda N, Odajima H, Ohshima T. Org. Process Res. Dev. 2019; 23: 588
  • 85 Shimizu Y, Morimoto H, Zhang M, Ohshima T. Angew. Chem. Int. Ed. 2012; 51: 8564
  • 86 Ji CL, Xie PP, Hong X. Molecules 2018; 23: 2681
  • 87 Wang H, Zhang S.-Q, Hong X. Chem. Commun. 2019; 55: 11330
  • 88 Pharmaceutical Process Development: Current Chemical and Engineering Challenges. Blacker AJ, Williams MT. RSC; Cambridge: 2011