Synlett, Table of Contents Synlett 2020; 31(11): 1077-1081DOI: 10.1055/s-0040-1707121 letter © Georg Thieme Verlag Stuttgart · New York Copper-Catalyzed Asymmetric Intermolecular N-Monoarylation of Unprotected Sulfonamides via Desymmetrization of Diaryliodonium Salts at Room Temperature Yan-Li Li , Chun Zhang , Xiao Jin∗ , Xiu-Ling Yu∗ , Zhen Wang , Hui-Zhen Zhang , Wen-Qiang Yang∗ Recommend Article Abstract Buy Article All articles of this category Abstract A copper-catalyzed asymmetric intermolecular N-monoarylation of weakly nucleophilic sulfonamide by desymmetrization of cyclic diaryliodonium salts has been developed. Chiral copper(II)–diamine ligand complexes catalyzed this intermolecular asymmetric aryl C–N cross-coupling reaction effectively at room temperature to afford a series of N-monoarylsulfonamides in good to excellent yields and enantioselectivities. Key words Key wordsasymmetric synthesis - copper-catalyzed - N-monoarylation - sulfonamide - diaryliodonium salt - desymmetrization Full Text References References and Notes For some important reviews of transition-metal-catalyzed aryl C–N cross coupling reactions, see: 1a Lin H, Sun D. Org. Prep. Proced. Int. 2013; 45: 341 1b Ruiz-Castillo P, Buchwald SL. Chem. Rev. 2016; 116: 12564 1c Munir I, Zahoor AF, Rasool N, Naqvi SA. R, Zia KM, Ahmad R. Mol. Diversity 2019; 23: 215 1d West MJ, Fyfe JW. B, Vantourout JC, Watson AJ. B. Chem. Rev. 2019; 119: 12491 For examples of Pd-catalyzed enantioselective N-arylation for the formation of optically active atropisomeric compounds with N–C chiral axis, see: 2a Kitagawa O, Takahashi M, Yoshikawa M, Taguchi T. J. Am. Chem. Soc. 2005; 127: 3676 2b Kitagawa O, Yoshikawa M, Tanabe H, Morita T, Takahashi M, Dobashi Y, Taguchi T. J. Am. Chem. Soc. 2006; 128: 12923 2c Kitagawa O, Kurihara D, Tanabe H, Shibuya T, Taguchi T. Tetrahedron Lett. 2008; 49: 471 2d Takahashi M, Tanabe H, Nakamura T, Kuribara D, Yamazaki T, Kitagawa O. Tetrahedron 2010; 66: 288 2e Takahashi I, Morita F, Kusagaya S, Fukaya H, Kitagawa O. Tetrahedron: Asymmetry 2012; 23: 1657 For examples of transition-metal-catalyzed intramolecular enantioselective N-arylation via desymmetrization strategy, see: 3a Takenaka K, Itoh N, Sasai H. Org. Lett. 2009; 11: 1483 3b Porosa L, Viirre RD. Tetrahedron Lett. 2009; 50: 4170 3c Zhou FT, Guo JJ, Liu JG, Ding K, Yu SY, Cai Q. J. Am. Chem. Soc. 2012; 134: 14326 3d Zhou FT, Cheng GJ, Yang WQ, Long Y, Zhang SS, Wu YD, Zhang XH, Cai Q. Angew. Chem. Int. Ed. 2014; 53: 9555 3e Takenaka K, Sako M, Takatani S, Sasai H. ARKIVOC 2015; (ii): 52 3f He N, Huo YP, Liu JG, Huang YS, Zhang SS, Cai Q. Org. Lett. 2015; 17: 374 3g Liu J, Tian Y, Shi J, Zhang S, Cai Q. Angew. Chem. Int. Ed. 2015; 54: 10917 For examples of intramolecular enantioselective N-arylation via kinetic resolution, see: 4a Tagashira J, Imao D, Yamamoto T, Ohta T, Furukawa I, Ito Y. Tetrahedron: Asymmetry 2005; 16: 2307 4b Yang W, Long Y, Zhang S, Zeng Y, Cai Q. Org. Lett. 2013; 15: 3598 4c Liu YY, Wang ZS, Guo B, Cai Q. Tetrahedron Lett. 2016; 57: 2379 For examples of iridium-catalyzed intramolecular enantioselective C–H amidations of phosphine oxides via desymmetrization strategy, see: 5a Gwon D, Park S, Chang S. Tetrahedron 2015; 71: 4504 5b Jang YS, Dieckmann M, Cramer N. Angew. Chem. Int. Ed. 2017; 56: 15088 6a Drew J. Science 2000; 287: 1960 6b Stellwagen JC, Adjabeng GM, Arnone MR, Dickerson SH, Han C, Hornberger KR, King AJ, Mook RA. Jr, Petrov KG, Rheault TR, Rominger CM, Rossanese OW, Smitheman KN, Waterson AG, Uehling DE. Bioorg. Med. Chem. Lett. 2011; 21: 4436 6c Canale V, Partyka A, Kurczab R, Krawczyk M, Kos T, Satala G, Kubica B, Jastrzebska-Wiesek M, Wesolowska A, Bojarski AJ, Popik P, Zajdel P. Bioorg. Med. Chem. 2017; 25: 2789 6d Dai X, Kaluz S, Jiang Y, Shi L, McKinley D, Wang Y, Wang B, Van Meir EG, Tan C. Oncotarget 2017; 8: 99245 7a Suh OK, Kim SH, Lee MG. Biopharm. Drug. Dispos. 2003; 24: 275 7b Gulcin I, Taslimi P. Expert. Opin. Ther. Pat. 2018; 28: 541 8a Fox E, Maris JM, Widemann BC, Goodspeed W, Goodwin A, Kromplewski M, Fouts ME, Medina D, Cohn SL, Krivoshik A, Hagey AE, Adamson PC, Balis FM. Clin. Cancer Res. 2008; 14: 1111 8b Assi R, Kantarjian HM, Kadia TM, Pemmaraju N, Jabbour E, Jain N, Daver N, Estrov Z, Uehara T, Owa T, Cortes JE, Borthakur G. Cancer 2018; 124: 2758 8c Rakesh KP, Wang SM, Leng J, Ravindar L, Asiri AM, Marwani HM, Qin HL. Anticancer Agents Med. Chem. 2018; 18: 488 9a Miller JF, Andrews CW, Brieger M, Furfine ES, Hale MR, Hanlon MH, Hazen RJ, Kaldor I, McLean EW, Reynolds D, Sammond DM, Spaltenstein A, Tung R, Turner EM, Xu RX, Sherrill RG. Bioorg. Med. Chem. Lett. 2006; 16: 1788 9b Ermann M, Riether D, Walker ER, Mushi IF, Jenkins JE, Noya-Marino B, Brewer ML, Taylor MG, Amouzegh P, East SP, Dymock BW, Gemkow MJ, Kahrs AF, Ebneth A, Lobbe S, O'Shea K, Shih DT, Thomson D. Bioorg. Med. Chem. Lett. 2008; 18: 1725 9c Shafique M, Hameed S, Naseer MM, Al-Masoudi NA. Mol. Diversity 2018; 22: 957 10 Liu DQ, Sun M, Kord AS. J. Pharm. Biomed. Anal. 2010; 51: 999 For examples of Pd- or Cu-catalyzed N-arylation of sulfonamide reactions, see: 11a He H, Wu YJ. Tetrahedron Lett. 2003; 44: 3385 11b Teo YC, Yong FF. Synlett 2011; 6: 837 11c Shekhar S, Dunn TB, Kotecki BJ, Montavon DK, Cullen SC. J. Org. Chem. 2011; 76: 4552 11d Wang X, Guram A, Ronk M, Milne JE, Tedrow JS, Faul MM. Tetrahedron Lett. 2012; 53: 7 11e Teo YC, Yong FF, Ithnin IK, Yio SH. T, Lin ZY. Eur. J. Org. Chem. 2013; 515 11f Nasrollahzadeh M, Ehsani A, Maham M. Synlett 2014; 25: 505 11g Geng X, Mao S, Chen LS, Yu JJ, Han JW, Hua JL, Wang LM. Tetrahedron Lett. 2014; 55: 3856 11h Moon SY, Koh M, Rathwell K, Jung SH, Kim WS. Tetrahedron 2015; 71: 1566 11i Jiang Y, You Y, Dong W, Peng Z, Zhang Y, An D. J. Org. Chem. 2017; 82: 5810 11j Vantourout JC, Li L, Bendito-Moll E, Chabbra S, Arrington K, Bode BE, Isidro-Llobet A, Kowalski JA, Nilson MG, Wheelhouse KM. P, Woodard JL, Xie SP, Leitch DC, Watson AJ. B. ACS Catal. 2018; 8: 9560 11k Becica J, Hruszkewycz DP, Steves JE, Elward JM, Leitch DC, Dobereiner GE. Org. Lett. 2019; 21: 8981 11l West MJ, Thomson B, Vantourout JC, Watson AJ. B. Asian. J. Org. Chem. 2019; 11m Zu WS, Liu S, Jia X, Xu L. Org. Chem. Front. 2019; 6: 1356 For some reviews of the application of diaryliodonium salts, see: 12a Merritt EA, Olofsson B. Angew. Chem. Int. Ed. 2009; 48: 9052 12b Yoshimura A, Saito A, Zhdankin VV. Chemistry 2018; 24: 15156 12c Wang M, Chen S, Jiang X. Chem. Asian J. 2018; 13: 2195 13a Bigot A, Williamson AE, Gaunt MJ. J. Am. Chem. Soc. 2011; 133: 13778 13b Harvey JS, Simonovich SP, Jamison CR, MacMillan DW. C. J. Am. Chem. Soc. 2011; 133: 13782 13c Zhu S, MacMillan DW. C. J. Am. Chem. Soc. 2012; 134: 10815 13d Guo J, Dong SX, Zhang YL, Kuang YL, Liu XH, Lin LL, Feng XM. Angew. Chem. Int. Ed. 2013; 52: 10245 13e Cahard E, Male HP, Tissot M, Gaunt MJ. J. Am. Chem. Soc. 2015; 137: 7986 13f Beaud R, Phipps RJ, Gaunt MJ. J. Am. Chem. Soc. 2016; 138: 13183 13g Hamaguchi N, Kuriyama M, Onomura O. Tetrahedron: Asymmetry 2016; 27: 177 13h Lukamto DH, Gaunt MJ. J. Am. Chem. Soc. 2017; 139: 9160 13i Wu H, Wang Q, Zhu J. Chem. Eur. J. 2017; 23: 13037 13j Wu H, Wang Q, Zhu J. Angew. Chem. Int. Ed. 2018; 57: 2721 14a Xu SB, Zhao K, Gu ZH. Adv. Synth. Catal. 2018; 360: 3877 14b Hou MQ, Deng RX, Gu ZH. Org. Lett. 2018; 20: 5779 14c Li B, Chao ZY, Li CY, Gu ZH. J. Am. Chem. Soc. 2018; 140: 9400 14d Zhu K, Xu K, Fang Q, Wang Y, Tang B, Zhang FZ. ACS Catal. 2019; 9: 4951 14e Xue XP, Gu ZH. Org. Lett. 2019; 21: 3942 14f Li QG, Zhang MK, Zhan SM, Gu ZH. Org. Lett. 2019; 21: 6374 14g Duan LH, Zhao K, Wang ZG, Zhang FL, Gu ZH. ACS Catal. 2019; 9: 9852 15a Yang WQ, Liu YY, Zhang SS, Cai Q. Angew. Chem. Int. Ed. 2015; 54: 8805 15b Yang WQ, Wang XY, Jin X, Sun H, Guo RN, Xu W, Cai Q. Adv. Synth. Catal. 2019; 361: 562 16 General Procedure for the Asymmetric Intermolecular N-Arylation of Sulfonamide The diaryliodonium salt 1 (0.25 mmol, 1.0 equiv), sulfonamide 2 (0.30 mmol, 1.2 equiv), catalyst (0.025 mmol, 10 mol%), ligand L1 (0.0375 mmol, 15 mol%), and base (0.5 mmol, 2.0 equiv) were added to a 10 mL oven-dried Schlenk tube, followed by addition of anhydrous 1,2-dichloroethane (1.5 mL) under argon atmosphere. The mixture was stirred at room temperature for 15 h. Then the reaction mixture was poured into water (1.5mL) and extracted with dichloromethane (3 × 5 mL). The combined organic phase dried over anhydrous Na2SO4 and concentrated under reduced pressure. The crude product was purified by flash chromatography (silica gel, petroleum ether/ethyl acetate = 5:1) to give the desired product 3. (S)-Ethyl 3-(2-Iodophenyl)-3-[2-(phenylsulfonamido)phenyl]propanoate (3a) Yield 128.3 mg (96%); white solid, mp 83.4–84.2 °C; [α]D 25 –13.4 (c 0.35, CHCl3, 88% ee). HPLC Chiralpak AD-H (hexane/i-PrOH = 6:4, 1.0 mL/min): τmajor = 14.7 min, τminor = 10.0 min. 1H NMR (400 MHz, CDCl3): δ = 7.84 (d, J = 7.6 Hz, 1 H), 7.75 (d, J = 7.2 Hz, 2 H), 7.54 (d, J = 7.6 Hz, 1 H), 7.46 (t, J = 7.6 Hz, 1 H), 7.36 (t, J = 7.6 Hz, 2 H), 7.23–7.18 (m, 2 H), 7.17–7.10 (m, 2 H), 7.01 (br s, 1 H), 6.96–6.90 (m, 2 H), 4.67 (dd, J = 9.2, 6.0 Hz, 1 H), 4.08–3.99 (m, 2 H), 2.87 (dd, J = 16.0, 6.0 Hz, 1 H), 2.62 (dd, J = 16.4, 9.2 Hz, 1 H), 1.10 (t, J = 7.2 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 171.0, 143.9, 140.3, 140.0, 134.8, 133.4, 132.8, 129.0, 129.0, 128.8, 128.5, 127.9, 127.8, 127.2, 125.6, 123.2, 101.1, 60.9, 45.3, 40.1, 14.1. ESI-MS: m/z = 558.0 [M + Na]+. HRMS (ESI): m/z [M + Na]+ calcd for C23H22INNaO4S: 558.0206; found: 558.0207. (S)-Ethyl 3-(2-Iodophenyl)-3-[2-(2-methylphenylsulfonamido)phenyl]propanoate (3b) Yield 129.0 mg (94%); white solid, mp 82.3–83.2 °C; [α]D 25 –6.5 (c 0.95, CHCl3, 87% ee). HPLC Chiralpak AD-H (hexane/i-PrOH = 7:3, 1.0 mL/min): τmajor = 11.1 min, τminor = 10.3 min. 1H NMR (400 MHz, CDCl3): δ = 7.98 (dd, J = 8.0, 1.2 Hz, 1 H), 7.85 (dd, J = 8.0, 1.2 Hz, 1 H), 7.41 (t, J = 7.6 Hz, 1 H), 7.30–7.25 (m, 3 H), 7.22 (br s, 1 H), 7.20 (dd, J = 8.0, 1.6 Hz, 1 H), 7.15–7.04 (m, 4 H), 6.94 (td, J = 8.0, 1.6 Hz, 1 H), 4.87 (dd, J = 9.6, 6.4 Hz, 1 H), 4.10–4.04 (m, 2 H), 2.95 (dd, J = 16.4, 6.0 Hz, 1 H), 2.75 (dd, J = 16.4, 9.2 Hz, 1 H), 2.58 (s, 3 H), 1.13 (t, J = 7.2 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 171.3, 144.1, 140.3, 139.0, 137.5, 135.1, 132.9, 132.8, 132.7, 129.4, 129.0, 128.7, 128.3, 127.9, 127.7, 126.3, 125.1, 122.1, 101.3, 60.9, 45.2, 40.2, 20.4, 14.0. ESI-MS: m/z 572.0 [M + Na]+. HRMS (ESI): m/z [M + Na]+ calcd for C24H24INNaO4S: 572.0363; found: 572.0363. (S)-Ethyl 3-[2-(3-Bromophenylsulfonamido)phenyl]-3-(2-iodophenyl)propanoate (3c) Yield 118.2 mg (77%); white solid, mp 154.2–154.7 °C; [α]D 25 –6.8 (c 0.31, CHCl3, 86% ee). HPLC Chiralpak AD-H (hexane/i-PrOH = 7:3, 1.0 mL/min): τmajor = 15.8 min, τminor = 10.3 min. 1H NMR (400 MHz, CDCl3): δ = 7.93 (t, J = 1.6 Hz, 1 H),7.85 (d, J = 8.0 Hz, 1 H), 7.63 (d, J = 7.6 Hz, 1 H), 7.55 (t, J = 8.0 Hz, 2 H), 7.25–7.15 (m, 5 H), 7.09 (br s, 1 H), 6.94–6.90 (m, 2 H), 4.63 (dd, J = 10.0, 5.2 Hz, 1 H), 4.10–4.01 (m, 2 H), 2.90 (dd, J = 16.8, 5.6 Hz, 1 H), 2.72 (dd, J = 16.4, 10.0 Hz, 1 H), 1.11 (t, J = 7.2 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 171.1, 143.8, 141.7, 140.4, 135.9, 134.5, 133.6, 130.5, 130.0, 129.1, 128.8, 128.4, 128.1, 128.0, 125.9, 125.7, 123.5, 122.9, 101.0, 61.0, 45.2, 40.1, 14.1. ESI-MS: m/z 635.9 [M + Na]+. HRMS (ESI): m/z [M + Na]+ calcd for C23H21BrINNaO4S: 635.9312; found: 635.9312. Supplementary Material Supplementary Material Supporting Information