Synthesis, Table of Contents Synthesis 2020; 52(17): 2512-2520DOI: 10.1055/s-0040-1707135 feature © Georg Thieme Verlag Stuttgart · New York Aerobic C–H Functionalization Using Pyrenedione as the Photocatalyst Yuannian Zhang a Department of Food Science and Technology, National University of Singapore, Singapore, 117543, Singapore Email: fsthdj@nus.edu.sg , Xin Yang a Department of Food Science and Technology, National University of Singapore, Singapore, 117543, Singapore Email: fsthdj@nus.edu.sg , Jie Wu∗ b Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore Email: chmjie@nus.edu.sg , Dejiang Huang∗ a Department of Food Science and Technology, National University of Singapore, Singapore, 117543, Singapore Email: fsthdj@nus.edu.sg › Author Affiliations Recommend Article Abstract Buy Article All articles of this category Abstract We disclose a visible-light-promoted aerobic alkylation of activated C(sp3)–H bonds using pyrenedione (PYD) as the photocatalyst. Direct C–H bond alkylation of tetrahydrofuran with alkylidenemalononitriles is accomplished in over 90% yield in the presence of 5 mol% of PYD and 18 W blue LED light under ambient conditions. The substrate scope is extended to ethers, thioethers, and allylic C–H bonds in reactions with various electrophilic Michael acceptors. The catalytic turnover process is facilitated by oxygen. Our work represents the first example of using PYD as a photocatalyst to promote C(sp3)–H alkylation, revealing the unique character of PYD as a novel organophotocatalyst. Key words Key wordsorganophotocatalysts - pyrenedione - alkylation - tetrahydrofuran - visible light Full Text References References 1 Choi GJ, Zhu Q, Miller DC, Gu CJ, Knowles RR. Nature 2016; 539: 268 2 He J, Wasa M, Chan KS. L, Shao Q, Yu J.-Q. Chem. Rev. 2017; 117: 8754 3 Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. Chem. Rev. 2019; 119: 2192 4 Marzo L, Pagire SK, Reiser O, Konig B. Angew. Chem. Int. Ed. 2018; 57: 10034 5 Xuan J, Xiao WJ. Angew. Chem. Int. Ed. 2012; 51: 6828 6 Huo HH, Shen XD, Wang CY, Zhang LL, Rose P, Chen LA, Harms K, Marsch M, Hilt G, Meggers E. Nature 2014; 515: 100 7 Schultz DM, Yoon TP. Science 2014; 343: 1239176 8 Twilton J, Le C, Zhang P, Shaw MH, Evans RW, MacMillan DW. C. Nat. Rev. Chem. 2017; 1: 1 9 Srivastava V, Singh PP. RSC Adv. 2017; 7: 31377 10 Fan X, Xiao P, Jiao Z, Yang T, Dai X, Xu W, Tan JD, Cui G, Su H, Fang W, Wu J. Angew. Chem. Int. Ed. 2019; 58: 12580 11 Capaldo L, Riccardi R, Ravelli D, Fagnoni M. ACS Catal. 2018; 8: 304 12 Wu FJ, Wang LF, Chen JA, Nicewicz DA, Huang Y. Angew. Chem. Int. Ed. 2018; 57: 2174 13 Yu Q, Zhang YT, Wan JP. Green Chem. 2019; 21: 3436 14 Lerch S, Unkel LN, Wienefeld P, Brasholz M. Synlett 2014; 25: 2673 15 Ohkubo K, Fujimoto A, Fukuzumi S. J. Am. Chem. Soc. 2013; 135: 5368 16 Kee CW, Chin KF, Wong MW, Tan CH. Chem. Commun. 2014; 50: 8211 17 Zhang WY, Gacs J, Arends I, Hollmann F. ChemCatChem 2017; 9: 3821 18 Yasutake M, Fujihara T, Nagasawa A, Moriya K, Hirose T. Eur. J. Org. Chem. 2008; 4120 19 Zhang Y, Yang X, Tang H, Liang D, Wu J, Huang D. Green Chem. 2020; 22: 22 20 Fan X.-Z, Rong J.-W, Wu H.-L, Zhou Q, Deng H.-P, Tan JD, Xue C.-W, Wu L.-Z, Tao H.-R, Wu J. Angew. Chem. Int. Ed. 2018; 57: 8514 Supplementary Material Supplementary Material Supporting Information