Synthesis 2020; 52(17): 2512-2520
DOI: 10.1055/s-0040-1707135
feature
© Georg Thieme Verlag Stuttgart · New York

Aerobic C–H Functionalization Using Pyrenedione as the Photocatalyst

Yuannian Zhang
a   Department of Food Science and Technology, National University of Singapore, Singapore, 117543, Singapore   Email: fsthdj@nus.edu.sg
,
Xin Yang
a   Department of Food Science and Technology, National University of Singapore, Singapore, 117543, Singapore   Email: fsthdj@nus.edu.sg
,
Jie Wu
b   Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore   Email: chmjie@nus.edu.sg
,
Dejiang Huang
a   Department of Food Science and Technology, National University of Singapore, Singapore, 117543, Singapore   Email: fsthdj@nus.edu.sg
› Author Affiliations
Funding was provided by the National University of Singapore, the Ministry of Education (MOE) of Singapore (MOE2014-T2-1-134, MOE2017-T2-2-081) and the Natural Science Foundation of Jiangsu Province, P. R. of China (BK20141219).
Further Information

Publication History

Received: 27 March 2020

Accepted after revision: 05 May 2020

Publication Date:
02 June 2020 (online)


Abstract

We disclose a visible-light-promoted aerobic alkylation of activated C(sp3)–H bonds using pyrenedione (PYD) as the photocatalyst. Direct C–H bond alkylation of tetrahydrofuran with alkylidenemalononitriles is accomplished in over 90% yield in the presence of 5 mol% of PYD and 18 W blue LED light under ambient conditions. The substrate scope is extended to ethers, thioethers, and allylic C–H bonds in reactions with various electrophilic Michael acceptors. The catalytic turnover process is facilitated by oxygen. Our work represents the first example of using PYD as a photocatalyst to promote C(sp3)–H alkylation, revealing the unique character of PYD as a novel organophotocatalyst.

Supporting Information

 
  • References

  • 1 Choi GJ, Zhu Q, Miller DC, Gu CJ, Knowles RR. Nature 2016; 539: 268
  • 2 He J, Wasa M, Chan KS. L, Shao Q, Yu J.-Q. Chem. Rev. 2017; 117: 8754
  • 3 Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. Chem. Rev. 2019; 119: 2192
  • 4 Marzo L, Pagire SK, Reiser O, Konig B. Angew. Chem. Int. Ed. 2018; 57: 10034
  • 5 Xuan J, Xiao WJ. Angew. Chem. Int. Ed. 2012; 51: 6828
  • 6 Huo HH, Shen XD, Wang CY, Zhang LL, Rose P, Chen LA, Harms K, Marsch M, Hilt G, Meggers E. Nature 2014; 515: 100
  • 7 Schultz DM, Yoon TP. Science 2014; 343: 1239176
  • 8 Twilton J, Le C, Zhang P, Shaw MH, Evans RW, MacMillan DW. C. Nat. Rev. Chem. 2017; 1: 1
  • 9 Srivastava V, Singh PP. RSC Adv. 2017; 7: 31377
  • 10 Fan X, Xiao P, Jiao Z, Yang T, Dai X, Xu W, Tan JD, Cui G, Su H, Fang W, Wu J. Angew. Chem. Int. Ed. 2019; 58: 12580
  • 11 Capaldo L, Riccardi R, Ravelli D, Fagnoni M. ACS Catal. 2018; 8: 304
  • 12 Wu FJ, Wang LF, Chen JA, Nicewicz DA, Huang Y. Angew. Chem. Int. Ed. 2018; 57: 2174
  • 13 Yu Q, Zhang YT, Wan JP. Green Chem. 2019; 21: 3436
  • 14 Lerch S, Unkel LN, Wienefeld P, Brasholz M. Synlett 2014; 25: 2673
  • 15 Ohkubo K, Fujimoto A, Fukuzumi S. J. Am. Chem. Soc. 2013; 135: 5368
  • 16 Kee CW, Chin KF, Wong MW, Tan CH. Chem. Commun. 2014; 50: 8211
  • 17 Zhang WY, Gacs J, Arends I, Hollmann F. ChemCatChem 2017; 9: 3821
  • 18 Yasutake M, Fujihara T, Nagasawa A, Moriya K, Hirose T. Eur. J. Org. Chem. 2008; 4120
  • 19 Zhang Y, Yang X, Tang H, Liang D, Wu J, Huang D. Green Chem. 2020; 22: 22
  • 20 Fan X.-Z, Rong J.-W, Wu H.-L, Zhou Q, Deng H.-P, Tan JD, Xue C.-W, Wu L.-Z, Tao H.-R, Wu J. Angew. Chem. Int. Ed. 2018; 57: 8514