Subscribe to RSS
DOI: 10.1055/s-0040-1707160
Recent Advances of 1,3,5-Triazinanes in Aminomethylation and Cycloaddition Reactions
Our work in this area was sponsored by the National Natural Science Foundation of China (No. 91856119, 21820102003, 91956201, and 21772053), and Plan 111 (No. B17019) (Program of Introducing Talents of Discipline to Universities of China, 111 Program, B17019).Publication History
Received: 04 May 2020
Accepted after revision: 25 May 2020
Publication Date:
06 July 2020 (online)
Abstract
1,3,5-Trisubstituted 1,3,5-triazinanes (hexahydro-1,3,5-triazines), as stable and readily available surrogates for formaldimines, have found extensive applications for the construction of various nitrogen-containing compounds. The formaldimines, formed in situ from this reagent class, can participate in various aminomethylation and cycloaddition reactions. This short review presents recent advances in this field with emphasis on the conceptual ideas behind the developed methodologies and the reaction mechanisms.
1 Introduction
2 Aminomethylations with 1,3,5-Triazinanes
3 Cycloadditions with 1,3,5-Triazinanes
3.1 Use of 1,3,5-Triazinanes as Two-Atom Synthons
3.2 Use of 1,3,5-Triazinanes as Three-Atom Synthons
3.3 Use of 1,3,5-Triazinanes as Four-Atom Synthons
3.4 Use of 1,3,5-Triazinanes as Six-Atom Synthons
4 Conclusions
-
References
- 1a Taylor RD, MacCoss M, Lawson AD. G. J. Med. Chem. 2014; 57: 5845
- 1b Vitaku E, Smith DT, Njardarson JT. J. Med. Chem. 2014; 57: 10257
- 1c Joule JA, Mills K. Heterocyclic Chemistry at a Glance, 2nd ed. Wiley; Chichester: 2013
- 2a Nakamura I, Yamamoto Y. Chem. Rev. 2004; 104: 2127
- 2b Candeias NR, Branco LC, Gois PM. P, Afonso CA. M, Trindade AF. Chem. Rev. 2009; 109: 2703
- 2c Dhakshinamoorthy A, Garcia H. Chem. Soc. Rev. 2014; 43: 5750
- 2d Zhang B, Studer A. Chem. Soc. Rev. 2015; 44: 3505
- 2e Guo X.-X, Gu D.-W, Wu Z.-X, Zhang W.-B. Chem. Rev. 2015; 115: 1622
- 2f Chen J.-R, Hu X.-Q, Lu L.-Q, Xiao W.-J. Chem. Rev. 2015; 115: 5301
- 2g Wang Y, Lu H, Xu P.-F. Acc. Chem. Res. 2015; 48: 1832
- 2h Zhao Y.-T, Xia W.-J. Chem. Soc. Rev. 2018; 47: 2591
- 2i Zhang H, Lei A. Synthesis 2018; 51: 83
- 2j Trowbridge A, Walton SM, Gaunt MJ. Chem. Rev. 2020; 120: 2613
- 2k Xuan J, Cao X, Cheng X. Chem. Commun. 2018; 54: 5154
- 2l Xuan J, Studer A. Chem. Soc. Rev. 2017; 46: 4329
- 3 Bischoff CA, Reinfeld F. Ber. Dtsch. Chem. Ges. 1903; 36: 41
- 4a Richard TL, Motherwell WB. Tetrahedron 1992; 48: 1465
- 4b Ha HJ, Choi CJ, Lee WK. Synth. Commun. 2002; 32: 1495
- 4c Jones GO, García JM, Horn HW, Hedrick JL. Org. Lett. 2014; 16: 5502
- 5a Ha H.-J, Lee WK. Heterocycles 2002; 57: 1525
- 5b Giumanini AG, Verardo G, Zangrando E, Lassiani L. J. Prakt. Chem. 1987; 329: 1087
- 5c Ha HJ, Nam GS, Park KP. Tetrahedron Lett. 1990; 31: 1567
- 5d Ha HJ, Lee YS, Ahn YG. Heterocycles 1997; 45: 2357
- 5e Ha HJ, Suh JM, Kang KH, Ahn O, Han YG. Tetrahedron 1998; 54: 851
- 5f Ha HJ, Suh JM, Ahn YG, Dong Y, Yun H. Heterocycles 1999; 50: 203
- 5g Ha HJ, Choi CJ, Ahn YG, Yun H, Dong Y, Lee WK. J. Org. Chem. 2000; 65: 8384
- 5h Macías A, Ramallal AM, Alonso E, Pozo CD, González J. J. Org. Chem. 2006; 71: 7721
- 5i Rakhimova EB, Kirsanov VY, Mescheryakova ES, Khalilov LM, Ibragimov AG, Dzhemilev UM. Synlett 2018; 29: 1861
- 5j Rakhimova EB, Kirsanov VY, Mescheryakova ES, Khalilov LM, Ibragimov AG, Dzhemileva LU, D’yakonov VA, Dzhemilev UM. ACS Med. Chem. Lett. 2019; 10: 378
- 6 Oda S, Sam B, Krische MJ. Angew. Chem. Int. Ed. 2015; 54: 8525
- 7 Oda S, Franke J, Krische MJ. Chem. Sci. 2016; 7: 136
- 8 Lian X, Lin L, Fu K, Ma B, Liu X, Feng X. Chem. Sci. 2017; 8: 1238
- 9 Gong J, Li S.-W, Qurban S, Kang Q. Eur. J. Org. Chem. 2017; 2017: 3584
- 10 Liu R.-X, Liu J.-X, Wei Y, Shi M. Org. Lett. 2019; 21: 4077
- 11 Garve LK. B, Kreft A, Jones PG, Werz DB. J. Org. Chem. 2017; 82: 9235
- 12 Chu Z.-Y, Li N, Liang D, Li Z.-H, Zheng Y.-S, Liu J.-K. Tetrahedron Lett. 2018; 59: 715
- 13 Tu L, Li Z.-H, Feng T, Yu S.-Y, Huang R, Li J, Wang W.-X, Zheng Y.-S, Liu J.-K. J. Org. Chem. 2019; 84: 11161
- 14 Ji D.-Q, Sun J.-T. Org. Lett. 2018; 20: 2745
- 15 Zhang C.-B, Dou P.-H, You Y, Wang Z.-H, Zhou M.-Q, Xu X.-Y, Yuan W.-C. Tetrahedron 2019; 75: 130571
- 16 Guranova N, Dar’in D, Krasavin M. Synthesis 2018; 50: 2001
- 17 Ji D.-Q, Wang C, Sun J.-T. Org. Lett. 2018; 20: 3710
- 18 Zheng Y.-S, Tu L, Li N, Huang R, Feng T, Sun H, Lia Z.-H, Liu J.-K. Adv. Synth. Catal. 2019; 361: 44
- 19 Cheng X, Zhou S.-J, Xu G.-Y, Wang L, Yang Q.-Q, Xuan J. Adv. Synth. Catal. 2020; 362: 523
- 20 Liang D, Tan L.-P, Xiao W.-J, Chen J.-R. Chem. Commun. 2020; 56: 3777
- 21 Yang Y.-W, Yang W.-B. Chem. Commun. 2018; 54: 12182
- 22 Chen L, Liu K, Sun J.-T. RSC Adv. 2018; 8: 5532
- 23 Xu Y, Chen L, Yang Y.-W, Zhang Z.-Q, Yang W.-B. Org. Lett. 2019; 21: 6674
- 24 Reis MI. P, Campos VR, Resende JA. L. C, Silva FC, Ferreira VF. Beilstein J. Org. Chem. 2015; 11: 1235
- 25 Zhu C.-H, Xu G.-Y, Sun J.-T. Angew. Chem. Int. Ed. 2016; 55: 11867
- 26 Liu S, Yang P, Peng S.-Y, Zhu C.-H, Cao S.-Y, Sun J.-T. Chem. Commun. 2017; 53: 1152
- 27 Zheng Y, Chi Y.-J, Bao M, Qiu L.-H, Xu X.-F. J. Org. Chem. 2017; 82: 2129
- 28 Peng S.-Y, Cao S.-Y, Sun J.-T. Org. Lett. 2017; 19: 524
- 29 Zeng Z, Jin H, Song X, Wang Q, Rudolph M, Rominger F, Hashmi AS. K. Chem. Commun. 2017; 53: 4304
- 30 Peng S.-Y, Ji D.-Q, Sun J.-T. Chem. Commun. 2017; 53: 12770
- 31 Liu P, Xu G.-Y, Sun J.-T. Org. Lett. 2017; 19: 1858
- 32 Liu P, Zhu C.-H, Xu G.-Y, Sun J.-T. Org. Biomol. Chem. 2017; 15: 7743
- 33 Garve LK. B, Jones PG, Werz DB. Angew. Chem. Int. Ed. 2017; 56: 9226
- 34 Zhou Y.-X, Ma F.-H, Lu P, Wang Y.-G. Org. Biomol. Chem. 2019; 17: 8849
- 35 Ge J.-M, Wu X.-L, Bao X.-G. Chem. Commun. 2019; 55: 6090
- 36 Marzo L, Pagire SK, Reiser O, Konig B. Angew. Chem. Int. Ed. 2018; 57: 10034
- 37 Yu X.-Y, Zhao Q.-Q, Chen J, Xiao W.-J, Chen J.-R. Acc. Chem. Res. 2020; 53: 1066
- 38 Kletskov AV, Frontera A, Sinelshchikova AA, Grigoriev MS, Zaytsev VP, Grudova MV, Bunev AS, Presnukhina S, Shetnev A, Zubkov FI. Synlett 2020; 31: 1067
For selected examples, see: