RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000084.xml
Synthesis 2020; 52(20): 3036-3046
DOI: 10.1055/s-0040-1707167
DOI: 10.1055/s-0040-1707167
paper
Preparation of Diorganomagnesium Reagents by Halogen–Lithium Exchange of Functionalized Heteroaryl Halides and Subsequent in situ Trapping with MgCl2·LiCl in Continuous Flow
Funding Information: Studienstiftung des Deutschen Volkes, (Grant / Award Number: ) Fundação de Amparo à Pesquisa do Estado de São Paulo, (Grant / Award Number: '2018/08856-5')R. H. V. Nishimura thanks Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, Grant number: 2018/08856-5) for financial support. N. Weidmann thanks the German Academic Scholarship Foundation for a fellowship. We thank the DFG and LMU for financial support. We further thank BASF (Ludwigshafen) and Albemarle (Frankfurt) for the generous gift of chemicals, and Vapourtec and Uniqsis for technical support.
Weitere Informationen
Publikationsverlauf
Received: 28. Mai 2020
Accepted after revision: 30. Mai 2020
Publikationsdatum:
29. Juni 2020 (online)
‡ These authors contributed equally.
In memory of Prof. Dr. Rolf Huisgen
Abstract
A halogen–lithium exchange in the presence of MgCl2·LiCl on a broad range of heterocyclic scaffolds using a commercial flow set-up with nBuLi as exchange reagent is reported. The resulting diheteroarylmagnesium species were subsequently trapped with various electrophiles, such as ketones, aldehydes, allylic bromides, or disulfides affording functionalized heterocycles. A scale-up was performed by simply increasing the run-time without further optimizations.
Key words
heterocycles - flow chemistry - organomagnesium reagents - transmetalation - halogen–lithium exchangeSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1707167.
- Supporting Information
-
References
- 1a Astruc D. Modern Arene Chemistry . Wiley-VCH; Weinheim: 2002
- 1b Penning TD, Talley JJ, Bertenshaw SR, Carter JS, Collins PW, Docter S, Graneto MJ, Lee LF, Malecha JW, Miyashiro JM, Rogers RS, Rogier DJ, Yu SS, Anderson GD, Burton EG, Cogburn JN, Gregory SA, Koboldt CM, Perkins WE, Seibert K, Veenhuizen AW, Zhang YY, Isakson PC. J. Med. Chem. 1997; 40: 1347
- 1c Bhat GA, Montero JL-G, Panzica RP, Wotring LL, Townsend LB. J. Med. Chem. 1981; 24: 1165
- 1d Vicentini CB, Mares D, Tartari A, Manfrini M, Forlani G. J. Agric. Food Chem. 2004; 52: 1898
- 2a Beak P, Snieckus V. Acc. Chem. Res. 1982; 15: 306
- 2b Schlosser M. Angew. Chem. Int. Ed. 2005; 44: 376
- 2c Chinchilla R, Nájera C, Yus M. Chem. Rev. 2004; 104: 2667
- 2d Snieckus V. Chem. Rev. 1990; 90: 879
- 2e Foubelo F, Yus M. Chem. Soc. Rev. 2008; 37: 2620
- 2f Lutter FH, Hofmayer MS, Hammann JM, Malakhov V, Knochel P. Generation and Trapping of Functionalized Aryl- and Heteroarylmagnesium and -Zinc Compounds . In Organic Reactions, Vol. 100. Denmark SE. Wiley; Hoboken: 2019
- 3a Clayden J. In Organolithiums: Selectivity for Synthesis . Baldwin JE, Williams RM. Pergamon; Oxford: 2002
- 3b Whisler MC, Mac-Neil S, Snieckus V, Beak P. Angew. Chem. Int. Ed. 2004; 43: 2206
- 3c Morija K, Schwärzer K, Karaghiosoff K, Knochel P. Synthesis 2016; 48: 3141
- 3d Bellan AB, Knochel P. Synthesis 2019; 51: 3536
- 3e Skotnitzki J, Kremsmair A, Knochel P. Synthesis 2020; 52: 189
- 3f Skotnitzki J, Kremsmair A, Kicin B, Saeb R, Ruf V, Knochel P. Synthesis 2020; 52: 873
- 4a Asai T, Takata A, Ushiogi Y, Iinuma Y, Nagaki A, Yoshida J.-I. Chem. Lett. 2011; 40: 393
- 4b Iddon B. Heterocycles 1983; 20: 1127
- 4c Nagaki A, Yamada S, Doi M, Tomida Y, Takabayashi N, Yoshida J.-I. Green Chem. 2011; 13: 1110
- 5a Oda S, Yamamoto H. Angew. Chem. Int. Ed. 2013; 52: 8165
- 5b Kim H, Min K.-I, Inoue K, Im D.-J, Kim D.-P, Yoshida J.-i. Science 2016; 352: 691
- 5c Armstrong DR, Crosbie E, Hevia E, Mulvey RE, Ramsay DL, Robertson SD. Chem. Sci. 2014; 5: 3031
- 6a Yus M, Foubelo F. In Handbook of Functionalized Organometallics: Applications in Synthesis, Vol. 1. Knochel P. Wiley-VCH; Weinheim: 2005: 7-45
- 6b Becker MR, Ganiek MA, Knochel P. Chem. Sci. 2015; 6: 6649
- 6c Skotnitzki J, Kremsmair A, Keefer D, Gong Y, de Vivie-Riedle R, Knochel P. Angew. Chem. Int. Ed. 2019; 59: 320
- 6d Ramón DJ, Yus M. Tetrahedron 1996; 52: 13739
- 6e Olofson RA, Dougherty CM. J. Am. Soc. Chem. 1973; 95: 582
- 7a Rogers HR, Houk J. J. Am. Chem. Soc. 1982; 104: 522
- 7b Reich HJ, Phillips NH, Reich IL. J. Am. Chem. Soc. 1985; 107: 4101
- 7c Jedlicka B, Crabtree RH, Siebahn PE. M. Organometallics 1997; 16: 6021
- 7d Reich HJ. J. Org. Chem. 2012; 77: 5471
- 8a Ketels M, Ganiek MA, Weidmann N, Knochel P. Angew. Chem. Int. Ed. 2017; 56: 12770
- 8b Heinz B, Balkenhohl M, Knochel P. Synthesis 2019; 51: 4452
- 9a Brodmann T, Koos P, Metzger A, Knochel P, Ley SV. Org. Process Res. Dev. 2012; 16: 1102
- 9b Ghislieri D, Gilmore K, Seeberger PH. Angew. Chem. Int. Ed. 2015; 54: 678
- 9c Battilocchio C, Feist F, Hafner A, Simon M, Tran DN, Allwood DM, Blakemore DC, Ley SV. Nat. Chem. 2016; 8: 360
- 9d Seo H, Katcher MH, Jamison TF. Nat. Chem. 2017; 9: 453
- 10a Nagaki A, Kim H, Yoshida J.-i. Angew. Chem. Int. Ed. 2008; 47: 7833
- 10b Yoshida J.-i, Nagaki A, Yamada T. Chem. Eur. J. 2008; 14: 7450
- 10c Yoshida J.-i. Chem. Rec. 2010; 10: 332
- 10d Kim H, Nagaki A, Yoshida J.-i. Nat. Commun. 2011; 2: 264
General advances in flow chemistry: