Subscribe to RSS
DOI: 10.1055/s-0040-1707177
Synthesis of Peripherally Arylated Tetrathiafulvalenes Extended with an Anthraquinoid Spacer via Pd-Catalyzed C–H Arylation and Construction of a Double-Helical Cobalt-Based Metal-Organic Framework
This work was partially supported by JPSP KAKENHI Grant Number JP26410095, and by MEXT KAKENHI Grant Numbers JP15H03798 and 19H02690. This work was also supported by Grant-in-Aid for Research Promotion, Ehime University, to The Research Unit for Development of Organic Superconductors and to The Research Unit for Power Generation and Storage Materials.Publication History
Received: 15 May 2020
Accepted after revision: 10 June 2020
Publication Date:
13 July 2020 (online)
Published as part of the Special Topic Functional Organic Molecules
Abstract
Peripherally arylated tetrathiafulvalenes with an anthraquinoid spacer (TTFAQs) have been synthesized by using palladium-catalyzed direct C–H arylation of the 1,3-dithiole rings. Electrochemical analysis by cyclic voltammetry has revealed that the new tetraarylated TTFAQs show one pair of simultaneous two-electron transfer waves as the parent TTFAQ does. The hydrolysis of the tetra(p-ethoxycarbonylphenyl)-substituted derivative affords the corresponding tetracarboxylic acid, which forms a new double-helical metal-organic framework upon complexation with cobalt(III) nitrate.
Key words
tetrathiafulvalene - anthraquinoid - palladium catalysis - C–H arylation - electrochemical properties - metal-organic frameworks - X-ray diffractionSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1707177.
- Supporting Information
-
References
- 1 TTF Chemistry: Fundamentals and Applications of Tetrathiafulvalene. Yamada J, Sugimoto T. Kodansha-Springer; Tokyo: 2004
- 2a Canevet D, Sallé M, Zhang G, Zhang D, Zhu D. Chem. Commun. 2009; 2245
- 2b Gorgues A, Hudhomme P, Sallé M. Chem. Rev. 2004; 104: 5151
- 2c Segura JL, Martín N. Angew. Chem. Int. Ed. 2001; 40: 1372
- 2d Iyoda M, Hasegawa M, Miyake Y. Chem. Rev. 2004; 104: 5085
- 2e Lorcy D, Bellec N, Fourmigué M, Avarvari N. Coord. Chem. Rev. 2009; 253: 1398
- 2f Bergkamp JJ, Decurtins S, Liu S.-X. Chem. Soc. Rev. 2015; 44: 863
- 2g Pop F, Avarvari N. Chem. Commun. 2016; 52: 7906
- 2h Hasegawa M, Iyoda M. In Organic Redox Systems . Nishinaga T. Wiley; Hoboken: 2016. Chap. 4, 89
- 3 Application to molecular conductors: Misaki Y. Sci. Technol. Adv. Mater. 2009; 10: 024301
- 4a Inatomi Y, Hojo N, Yamamoto T, Shimada M, Watanabe S. 213th ECS Meeting, Phoenix. 2008; DOI: Abstract 167.
- 4b Inatomi Y, Hojo N, Yamamoto T, Watanabe S, Misaki Y. ChemPlusChem 2012; 77: 973
- 4c Kato M, Ogi D, Yao M, Misaki Y. Chem. Lett. 2013; 42: 1556
- 4d Kato M, Senoo K, Yao M, Misaki Y. J. Mater. Chem. A 2014; 2: 6747
- 4e Iwamoto S, Inatomi Y, Ogi D, Shibayama S, Murakami Y, Kato M, Takahashi K, Tanaka K, Hojo N, Misaki Y. Beilstein J. Org. Chem. 2015; 11: 1136
- 4f Yamauchi T, Shibata Y, Aki T, Yoshimura A, Yao M, Misaki Y. Chem. Lett. 2018; 47: 1176
- 4g Ogi D, Fujita Y, Kato M, Yamauchi T, Shirahata T, Yao M, Misaki Y. Eur. J. Org. Chem. 2019; 2725
- 4h Yamauchi T, Kato M, Shirahata T, Yao M, Misaki Y. Chem. Lett. 2019; 48: 1507
- 5a Akiba K, Ishikawa K, Inamoto N. Bull. Chem. Soc. Jpn. 1978; 51: 2674
- 5b Bryce MR, Moore AJ. Synth. Met. 1988; 25: 203
- 5c Bryce MR, Moore AJ, Hasan M, Ashwell GJ, Fraser AT, Clegg W, Hursthouse MB, Karaulov AI. Angew. Chem. Int. Ed. Engl. 1990; 29: 1450
- 5d Barthelmes K, Sittig M, Winter A, Schubert US. Eur. J. Inorg. Chem. 2017; 3698
- 5e Hachem H, Vacher A, Dorcet V, Lorcy D. Organometallics 2017; 36: 2208
- 6a Bryce MR, Finn T, Moore AJ, Batsanov AS, Howard JA. K. Eur. J. Org. Chem. 2000; 51
- 6b Jones AE, Christensen CA, Perepichka DF, Batsanov AS, Beeby A, Low PJ, Bryce MR, Parker AW. Chem. Eur. J. 2001; 7: 973
- 7a Martín N, Sańchez L, Herranz MÁ, Illescas B, Guldi DM. Acc. Chem. Res. 2007; 40: 1015
- 7b Wenger S, Bouit P.-A, Chen Q, Teuscher J, Censo DD, Humphry-Baker R, Moser J.-E, Delgado JL, Martín N, Zakeeruddin SM, Grätzel M. J. Am. Chem. Soc. 2010; 132: 5164
-
8 See ref 4g.
- 9a Hardouin-Lerouge M, Chesneau B, Allain M, Hudhomme P. J. Org. Chem. 2012; 77: 2441
- 9b Isla H, Gallego M, Perez EM, Viruela R, Ortí E, Martín N. J. Am. Chem. Soc. 2010; 132: 1772
- 9c Bivaud S, Goeb S, Croué V, Dron PI, Allain M, Sallé M. J. Am. Chem. Soc. 2013; 135: 10018
- 10 Mitamura Y, Yorimitsu H, Oshima K, Osuka A. Chem. Sci. 2011; 2: 2017
- 11a Bivaud S, Goeb S, Croué V, Allain M, Pop F, Sallé M. Beilstein J. Org. Chem. 2015; 11: 966
- 11b Croué V, Goeb S, Szalóki G, Allain M, Sallé M. Angew. Chem. Int. Ed. 2016; 55: 1746
- 11c Szalóki G, Croué V, Allain M, Goeb S, Sallé M. Chem. Commun. 2016; 52: 10012
- 11d Szalóki G, Croué V, Carré V, Aubriet F, Alévêque O, Levillain E, Allain M, Aragó J, Ortí E, Goeb S, Sallé M. Angew. Chem. Int. Ed. 2017; 56: 16272
- 11e Colomban C, Szalóki G, Allain M, Gómez L, Goeb S, Sallé M, Costas M, Ribas X. Chem. Eur. J. 2017; 23: 3016
- 11f Szalóki G, Krykun S, Croué V, Allain M, Morille Y, Aubriet F, Carré V, Voitenko Z, Goeb S, Sallé M. Chem. Eur. J. 2018; 24: 11273
- 12a Narayan TC, Miyakai T, Seki S, Dincă M. J. Am. Chem. Soc. 2012; 134: 12932
- 12b Park SS, Hontz ER, Sun L, Hendon CH, Walsh A, Voorhis TV, Dincă M. J. Am. Chem. Soc. 2015; 137: 1774
- 12c Chen B, Lv Z.-P, Leong CF, Zhao Y, D’Alessandro DM, Zuo J.-L. Cryst. Growth Des. 2015; 15: 1861
- 12d Sun L, Park SS, Sheberla D, Dincă M. J. Am. Chem. Soc. 2016; 138: 14772
- 12e Park SS, Hendon CH, Fielding AJ, Walsh A, O’Keeffe M, Dincă M. J. Am. Chem. Soc. 2017; 139: 3619
- 12f Hisaki I, Affendy EN. Q, Tohnai N. CrystEngComm 2017; 19: 4892
- 12g Su J, Yuan S, Wang H.-Y, Huang L, Ge J.-Y, Joseph E, Qin J, Cagin T, Zuo J.-L, Zhou H.-C. Nat. Commun. 2017; 8: 2008
- 12h Park SS, Rieth AJ, Hendon CH, Dincă M. J. Am. Chem. Soc. 2018; 140: 2016
- 12i Souto M, Romero J, Calbo J, Vitórica-Yrezábal IJ, Zafra JL, Casado J, Ortí E, Walsh A, Espallargas GM. J. Am. Chem. Soc. 2018; 140: 10562
- 12j Souto M, Santiago-Portillo A, Palomino M, Vitórica-Yrezábal IJ, Vieira BJ. C, Waerenborgh JC, Valencia S, Navalón S, Rey F, García H, Espallargas GM. Chem. Sci. 2018; 9: 2413
- 12k Leong CF, Wang C.-H, Ling CD, D’Alessandro DM. Polyhedron 2018; 154: 334
- 12l Pattengale B, Neu J, Ostresh S, Hu G, Spies JA, Okabe R, Brudvig GW, Schmuttenmaer CA. J. Am. Chem. Soc. 2019; 141: 9793
- 12m Castells-Gil J, Mañas-Valero S, Vitórica-Yrezábal IJ, Ananias D, Rocha J, Santiago R, Bromley ST, Baldoví JJ, Coronado E, Souto M, Espallargas GM. Chem. Eur. J. 2019; 25: 12636
- 12n Su J, Hu T.-H, Murase R, Wang H.-Y, D’Alessandro DM, Kurmoo M, Zuo J.-L. Inorg. Chem. 2019; 58: 3698
- 12o Cadiau A, Xie LS, Kolobov N, Shkurenko A, Qureshi M, Tchalala MR, Park SS, Bavykina A, Eddaoudi M, Dincă M, Henden CH, Gascon J. Chem. Mater. 2020; 32: 97
- 12p Wang F, Wang J, Maehrlein SF, Ma Y, Liu F, Zhu X.-Y. J. Phys. Chem. Lett. 2020; 11: 762
- 12q Su J, He W, Li X.-M, Sun L, Wang H.-Y, Lan Y.-Q, Ding M, Zuo J.-L. Matter 2020; 2: 711
- 13 Cai S, Sun B, Li X, Yan Y, Navarro A, Garzón-Ruiz A, Mao H, Chatterjee R, Yano J, Zhu C, Reimer JA, Zheng S, Fan J, Zhang W, Liu Y. ACS Appl. Mater. Interfaces 2020; 12: 19054
- 14a Wang H.-Y, Ge J.-J, Hua C, Jiao C.-Q, Wu Y, Leong CF, D’Alessandro DM, Liu T, Zuo J.-L. Angew. Chem. Int. Ed. 2017; 56: 5465
- 14b Wang H.-Y, Su J, Ma J.-P, Yu F, Leong CF, D’Alessandro DM, Kurmoo M, Zuo J.-L. Inorg. Chem. 2019; 58: 8657
- 14c Yu Q, Su J, Ma J.-P, Leong CF, D’Alessandro DM, Wang H.-Y, Kurmoo M, Zuo J.-L. Cryst. Growth Des. 2019; 19: 3012
- 15 During the preparation of this manuscript, a paper about a double-helical MOF composed of a tetrabenzoic acid-TTFAQ ligand and a Zn metal node appeared: Gordillo MA, Benavides PA, Panda DK, Saha S. ACS Appl. Mater. Interfaces 2020; 12: 12955 . We also prepared a Zn-based MOF via the same procedure. The structure of the Zn-based MOF 3 prepared in this work is similar to the precedent work, however, there are slight differences (see the Supporting Information)
- 16a Coucouvanis D, Reynolds RA. III, Dunham WR. J. Am. Chem. Soc. 1995; 117: 7570
- 16b Aromí G, Batsanov AS, Christian P, Helliwell M, Parkin A, Parsons S, Smith AA, Timco GA, Winpenny RE. P. Chem. Eur. J. 2003; 9: 5142
- 17 Chen B, Ockwig NW, Fronczek FR, Contreras DS, Yaghi OM. Inorg. Chem. 2005; 44: 181
- 18 Alvarez S. Dalton Trans. 2013; 8617
For reviews on the TTF materials, see:
Application to positive electrode materials for rechargeable batteries: