Synthesis 2020; 52(22): 3439-3445
DOI: 10.1055/s-0040-1707233
paper
© Georg Thieme Verlag Stuttgart · New York

An Efficient Hydration and Tandem Transfer Hydrogenation of Alkynes for the Synthesis of Alcohol in Water

Nianhua Luo
a   School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, P. R. of China   eMail: oyl0327@163.com   eMail: luorenshi2010@163.com
,
Yuhong Zhong
a   School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, P. R. of China   eMail: oyl0327@163.com   eMail: luorenshi2010@163.com
,
Ji-Tian Liu
b   Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. of China
,
Lu Ouyang
a   School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, P. R. of China   eMail: oyl0327@163.com   eMail: luorenshi2010@163.com
,
Renshi Luo
a   School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, P. R. of China   eMail: oyl0327@163.com   eMail: luorenshi2010@163.com
› Institutsangaben
The authors thank the National Natural Science Foundation of China (21962004, 21562004), Jiangxi Provincial Department of Science and Technology (20192BAB203004), the Jiangxi Education Hall Science and Technology Foundation (GJJ180801), the emergency research project for Gannan Medical University (YJ202027) and the Fundamental Research Funds for Gannan Medical University (QD201810, QD201816) for financial support.
Weitere Informationen

Publikationsverlauf

Received: 21. Mai 2020

Accepted after revision: 09. Juli 2020

Publikationsdatum:
11. August 2020 (online)


Abstract

A practical and efficient method for the synthesis of alcohols in one pot from readily available alkynes via a tandem process by formic acid promoted hydration and metal-ligand bifunctional iridium-catalyzed­ transfer hydrogenation under mild conditions has been described. This transformation is simple, efficient, and can be performed with a variety of alkynes in good yields and with excellent stereoselectivities. Experimental results showed high catalytic activity, and turnover frequency (TOF) up to 25000. Importantly, this transformation can be conducted in water, and is thus green and environmentally friendly.

Supporting Information