Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2021; 53(01): 135-145
DOI: 10.1055/s-0040-1707245
DOI: 10.1055/s-0040-1707245
paper
MeONH2·HCl-Mediated α-Methylenation/Conjugate Addition of α-Sulfonyl o-Hydroxyacetophenones with Methyl Sulfoxides: Route to 3-Sulfonylchroman-4-ones
The authors would like to thank the Ministry of Science and Technology of the Republic of China, Taiwan for financial support (MOST 109-2113-M-037-014-MY3).Further Information
Publication History
Received: 06 July 2020
Accepted after revision: 13 July 2020
Publication Date:
19 August 2020 (online)
Abstract
A novel and efficient route for the synthesis of 3-sulfonylchroman-4-ones from α-sulfonyl o-hydroxyacetophenones with methyl sulfoxides via a MeONH2·HCl-mediated sequential methylenation/ conjugate addition is described. Plausible reaction mechanisms are proposed and discussed. Various reaction conditions for this novel, one-pot, environmentally friendly conversion were investigated.
Key words
chroman-4-ones - o-hydroxyacetophenones - methylenation - methyl sulfoxides - sulfonyl compoundsSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1707245. Included are scanned photocopies of NMR spectra for all compounds and X-ray analysis data of 4a, 4f, 4x, 5a and 5b.
- Supporting Information
- CIF File
-
References
- 1 Xiang J.-C, Gao Q.-H, Wu A.-X. The Applications of DMSO. In Solvents as Reagents in Organic Synthesis: Reactions and Applications. Wu X.-F. Wiley-VCH; Weinheim: 2017. Chap. 7
- 2a Liu Y, Song R.-J, Luo S, Li J.-H. Org. Lett. 2018; 20: 212
- 2b Zhao Y, Chen X, Chen T, Zhou Y, Yin S.-F, Han L.-B. J. Org. Chem. 2015; 80: 62
- 2c Chen X, Chen T, Zhou Y, Au C.-T, Han L.-B, Yin S.-F. Org. Biomol. Chem. 2014; 12: 247
- 2d Yu D, Zhang Y. Adv. Synth. Catal. 2011; 353: 163
- 3a Pu F, Li Y, Song Y.-H, Xiao J, Liu Z.-W, Wang C, Liu Z.-T, Chen J.-G, Lu J. Adv. Synth. Catal. 2016; 358: 539
- 3b Modi A, Ali W, Patel BK. Adv. Synth. Catal. 2016; 358: 2100
- 3c Kaswan P, Nandwana NK, DeBoef B, Kumar A. Adv. Synth. Catal. 2016; 358: 2108
- 4a Ebule R, Mudshinge S, Nantz MH, Mashuta MS, Hammond GB, Xu B. J. Org. Chem. 2019; 84: 3249
- 4b Wen Z.-K, Liu X.-H, Liu Y.-F, Chao J.-B. Org. Lett. 2017; 19: 5798
- 4c Xue L, Cheng G, Zhu R, Cui X. RSC Adv. 2017; 7: 44009
- 4d Sun K, Zhu ZH, Sun JJ, Liu LL, Wang X. J. Org. Chem. 2016; 81: 1476
- 4e Li PF, Weng YX, Xu XX, Cui XL. J. Org. Chem. 2016; 81: 3994
- 4f Patel OP. S, Anand D, Maurya RK, Yadav PP. J. Org. Chem. 2016; 81: 7626
- 4g Liu P, Shen ZY, Yuan Y, Sun PP. Org. Biomol. Chem. 2016; 14: 6523
- 4h Sun K, Wang X, Jiang Y, Lv Y, Zhang L, Xiao B, Li D, Zhu Z, Liu L. Chem. Asian J. 2015; 10: 536
- 4i Mahajan PS, Tanpure SD, More NA, Gajbhiye JM, Mhaske SB. RSC Adv. 2015; 5: 101641
- 4j Sun K, Lv Y, Zhu Z, Zhang L, Wu H, Liu L, Jiang Y, Xiao B, Wang X. RSC Adv. 2015; 5: 3094
- 4k Wang J, Rochon FD, Yang Y, Hua L, Kayser MM. Tetrahedron: Asymmetry 2007; 18: 1115
- 5a Luo WK, Shi X, Zhou W, Yang L. Org. Lett. 2016; 18: 2036
- 5b Li K, Wu Q, Lan J, You J. Nat. Commun. 2015; 6: 8404
- 6a Wang C, Li Y, Gong M, Wu Q, Zhang J, Kim JK, Huang M, Wu Y. Org. Lett. 2016; 18: 4151
- 6b Bunescu A, Wang Q, Zhu J. Org. Lett. 2015; 17: 1890
- 6c Li Y, Liu B, Li H.-B, Wang Q, Li J.-H. Chem. Commun. 2015; 51: 1024
- 7a Padilla-Salinas R, Walvoord RR, Tcyrulnikov S, Kozlowski MC. Org. Lett. 2013; 15: 3966
- 7b Akagawa K, Kudo K. Angew. Chem. Int. Ed. 2012; 51: 12786
- 8a Jones-Mensah E, Karki M, Magolan J. Synthesis 2016; 48: 1421
- 8b Wu X.-F, Natte K. Adv. Synth. Catal. 2016; 358: 336
- 8c Tashrifi Z, Khanaposhtani MM, Larijani B, Mahdavia M. Adv. Synth. Catal. 2020; 362: 65
- 9a Zhu H, Meng X, Zhang Y, Chen G, Cao Z, Sun X, You J. J. Org. Chem. 2017; 82: 12059
- 9b Liu Y.-F, Ji P.-Y, Xu J.-W, Hu Y.-Q, Liu Q, Luo W.-P, Cuo C.-C. J. Org. Chem. 2017; 82: 7159
- 9c Pothikumar R, Sujatha C, Namitharan K. ACS Catal. 2017; 7: 7783
- 10a Tang L, Yang Z, Chang X, Jiao J, Ma X, Rao W, Zhou Q, Zheng L. Org. Lett. 2018; 20: 6520
- 10b Hu H, Chen X, Sun K, Wang J, Liu Y, Liu H, Fan L, Yu B, Sun Y, Qu L, Zhao Y. Org. Lett. 2018; 20: 6157
- 10c Lu D, Wan Y, Kong L, Zhu G. Org. Lett. 2017; 19: 2929
- 10d Rafiński Z, Kozakiewicz A. J. Org. Chem. 2015; 80: 7468
- 10e Ankner T, Fridén-Saxin M, Pemberton N, Seifert T, Grøtli M, Luthman K, Hilmersson G. Org. Lett. 2010; 12: 2210
- 10f de Alaniz JR, Kerr MS, Moore JL, Rovis T. J. Org. Chem. 2008; 73: 2033
- 11a Basavarajappa HD, Lee B, Lee H, Sulaiman RS, An H, Magaña C, Shadmand M, Vayl A, Rajashekhar G, Kim E.-Y, Suh Y.-G, Lee K, Seo S.-Y, Corson TW. J. Med. Chem. 2015; 58: 5015
- 11b Seifert T, Malo M, Kokkola T, Engen K, Fridén-Saxin M, Wallén EA. A, Lahtela-Kakkonen M, Jarho EM, Luthman K. J. Med. Chem. 2014; 57: 9870
- 11c Amato E, Bankemper T, Kidney R, Do T, Ma L. Bioorg. Med. Chem. 2014; 22: 126
- 11d Guo H, Zhao H, Kanno Y, Li W, Bai H. Bioorg. Med. Chem. Lett. 2013; 23: 3137
- 11e Conti C, Monaco LP, Desideri N. Bioorg. Med. Chem. 2011; 19: 7357
- 12a Chang M.-Y, Wu Y.-S, Chen H.-Y. Org. Lett. 2018; 20: 1824
- 12b Chang M.-Y, Chen H.-Y, Tsai Y.-L. J. Org. Chem. 2019; 84: 326
- 12c Yang D.-T, Meng Q.-Y, Zhong J.-J, Xiang M, Liu Q, Wu L.-Z. Eur. J. Org. Chem. 2013; 7528
- 12d Wan J.-P, Zhong S, Guo Y, Wei L. Eur. J. Org. Chem. 2017; 4401
- 13a Miyata O, Miyoshi T, Ueda M. ARKIVOC 2013; (ii): 60
- 13b Izquierdo J, Hutson GE, Cohen DT, Scheidt KA. A. Angew. Chem. Int. Ed. 2012; 51: 11686
- 14a Hatcher JM, Kohler MC, Coltart DM. Org. Lett. 2011; 13: 3810
- 14b Gabillet S, Lecerclé D, Loreau O, Carboni M, Dézard S, Gomis JM, Taran F. Org. Lett. 2007; 9: 3925
- 14c Fan J, Zhao Y, Zhang J, Xie M, Zhang Y. J. Org. Chem. 2020; 85: 691
- 14d Mizota I, Ueda C, Tesong Y, Tsujimoto Y, Shimizu M. Org. Lett. 2018; 20: 2291
- 14e Lai J, Tian L, Huo X, Zhang Y, Xie X, Tang S. J. Org. Chem. 2015; 80: 5894
- 15 Chang M.-Y, Chen H.-Y, Tsai Y.-L. Org. Lett. 2019; 21: 1832
- 16 CCDC 1938200 (4a), 1938201 (4f), 1945748 (4x), 1938202 (5a) and 1938203 (5b) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
- 17a Chu L, Yue X, Qing F.-L. Org. Lett. 2010; 12: 1644
- 17b Luo F, Pan C, Li L, Chen F, Cheng J. Chem. Commun. 2011; 47: 5304
- 17c Wang M, Tang B.-C, Ma J.-T, Wang Z.-X, Xiang J.-C, Wu Y.-D, Wang J.-G, Wu A.-X. Org. Biomol. Chem. 2019; 17: 1535
- 18 Traynelis VJ, Hergenrother WL. J. Org. Chem. 1964; 29: 221
- 19 Sharma P, Rohilla S, Jain N. J. Org. Chem. 2015; 80: 4116
- 20 Review on desulfonylation reactions, see: Nájera C, Yus M. Tetrahedron 1999; 55: 10547
- 21a Wang M, Li Y, Jiang X. Aldrichimica Acta 2020; 53: 19
- 21b Qiaz Z, Jiang X. Org. Biomol. Chem. 2017; 15: 1942
- 21c Liu H, Jiang X. Chem. Asian J. 2013; 8: 2546
- 22 Review on the Knoevenagel reaction, see: Majumdar KC, Taher A, Nandi RK. Tetrahedron 2012; 68: 5693
- 23a Yang D.-S, Ke S, Du X, Gao P, Zhu H.-T, Fan MJ. Tetrahedron 2017; 73: 5522
- 23b Kumpf J, Schwaebel ST, Bunz UH. F. J. Org. Chem. 2015; 80: 5159
- 23c Lakshmi V, Ravikanth M. J. Org. Chem. 2013; 78: 4993
- 23d Srinivas V, Koketsu M. J. Org. Chem. 2013; 78: 11612
Recent examples for CH2Cl2, see:
Recent examples for DMF and DMA, see:
Recent examples for DMSO, see:
Recent examples for toluene, see:
Recent examples for MeCN, see:
Recent examples for MeNO2, see:
Reviews on DMSO-mediated reactions, see:
Examples of DMSO-mediated α-methylenation, see:
Examples of 3-substituted chroman-4-one syntheses, see:
Examples of biologically active 3-substituted chroman-4-ones, see:
Examples of sulfonylchroman-4-one syntheses, see:
Reviews on Umpolung reactions, see:
Selected examples of Umpolung conjugation of C–S bonds. For α-sulfenyl ketones, see:
For β-sulfenyl ketones, see:
For β,β-disulfenyl ketones, see:
Reviews on sulfur chemistry, see:
Selected examples of Knoevenagel reactions, see: