Subscribe to RSS
DOI: 10.1055/s-0040-1707251
Integrated Synthesis Using Isothiocyanate-Substituted Aryllithiums by Flow Chemistry
We acknowledge the National Research Foundation of Korea (NRF) grants funded by the Korea government (MSIP) (No. 2019R1G1A1100681 and No. 2020R1C1C1014408).Publication History
Received: 23 June 2020
Accepted after revision: 21 July 2020
Publication Date:
21 August 2020 (online)
Dedicated to Prof. Jun-ichi Yoshida (1952–2019) for his pioneering work on flow chemistry
Published as part of the Cluster Integrated Synthesis Using Continuous-Flow Technologies
Abstract
The isothiocyanate (NCS) group is an attractive functional group in the field of organic and pharmaceutical chemistry. It can be transformed into other heteroatomic functional groups. It usually acts as the inductive group of biological activity and has also been traditionally used as the fluorescent-labeling reagent. However, it is not compatible with strong bases. When the NCS group is at para position in halobenzenes, it generally undergoes nucleophilic additions upon reaction with strong bases. To the best of our knowledge, there is currently no general methodology for the formation and reactions of NCS-functionalized aryllithiums for meta and para substituents. Herein, we report the continuous-flow generation of NCS-substituted aryllithiums from the corresponding haloarenes via a selective halogen–lithium exchange reaction and its reaction with various electrophiles to yield NCS-containing products. We also achieved an integrated synthesis through sequential reactions of the NCS-containing compounds with additional nucleophiles using the continuous-flow reactors.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1707251.
- Supporting Information
-
References
- 1a Browne DL, O’Brien M, Koos P, Cranwell PB, Polyzos A, Ley SV. Synlett 2012; 23: 1402
- 1b Pace V, Castoldi L, Monticelli S, Safranek S, Roller A, Langer T, Holzer W. Chem. Eur. J. 2015; 21: 18966
- 1c Prevost JR. C, Kozlova A, Saadi BE, Yildiz E, Modaffari S, Lambert DM, Pochet L, Wouters J, Dolušić E, Frédérick R. Tetrahedron Lett. 2018; 59: 4315
- 1d Lu C, Hu L, Zhao B, Yao Y. Organometallics 2019; 38: 2167
- 2a Klayman DL, Bartosevich JF, Griffin TS, Mason CJ, Scovill JP. J. Med. Chem. 1979; 22: 855
- 2b Ejim L, Farha MA, Falconer SB, Wildenhain J, Coombes BK, Tyers M, Brown ED, Wright GD. Nat. Chem. Biol. 2011; 7: 348
- 2c Lee C.-M, Lee D.-S, Jung W.-K, Yoo JS, Yim M.-J, Choi YH, Park S, Seo S.-K, Choi JS, Lee Y.-M, Park WS, Choi I.-W. Int. J. Mol. Med. 2016; 38: 912
- 2d Stone LK, Baym M, Lieberman TD, Chait R, Clardy J, Kishony R. Nat. Chem. Biol. 2016; 12: 902
- 2e Kjaerulff L, Sikandar A, Zaburannyi N, Adam S, Herrmann J, Koehnke J, Müller R. ACS Chem. Biol. 2017; 12: 2837
- 3a Coons AH, Creech HJ, Jones RN, Berliner E. J. Immunol. 1942; 45: 159
- 3b The TH, Feltkamp TE. W. Immunology 1970; 18: 875
- 3c Christensen PJ, Goodman RE, Pastoriza L, Moore B, Toews GB. Am. J. Pathol. 1999; 155: 1773
- 3d Hermanson GT. Bioconjugate Techniques, 3rd ed. 2013; 395
- 4a Parham WE, Bradsher CK. Acc. Chem. Res. 1982; 15: 300
- 4b Parham WE, Sayed YA. J. Org. Chem. 1974; 39: 2053
- 4c Parham WE, Jones LD. J. Org. Chem. 1976; 41: 2704
- 5 Kim H, Lee H.-J, Kim D.-P. Angew. Chem. Int. Ed. 2015; 54: 1877
- 6a Nagaki A, Kim H, Yoshida J. Angew. Chem. Int. Ed. 2008; 47: 7833
- 6b Nagaki A, Kim H, Yoshida J. Angew. Chem. Int. Ed. 2009; 48: 8063
- 6c Nagaki A, Kim H, Usutani H, Matsuo C, Yoshida J. Org. Biomol. Chem. 2010; 8: 1212
- 6d Nagaki A, Kim H, Moriwaki Y, Matsuo C, Yoshida J. Chem. Eur. J. 2010; 16: 11167
- 6e Kim H, Nagaki A, Yoshida J. Nat. Commun. 2011; 2: 264
- 6f Yoshida J, Kim H, Nagaki A. ChemSusChem 2011; 4: 331
- 6g Ren W, Kim H, Lee H.-J, Wang J, Wang H, Kim D.-P. Lab Chip 2014; 14: 4263
- 7a Kim H, Lee H.-J, Kim D.-P. Angew. Chem. Int. Ed. 2016; 55: 1422
- 7b Kim H, Min K.-I, Inoue K, Im DJ, Kim D.-P, Yoshida J. Science 2016; 352: 691
- 7c Kim H, Inoue K, Yoshida J. Angew. Chem. Int. Ed. 2017; 56: 7863
- 7d Lee H.-J, Kim H, Yoshida J, Kim D.-P. Chem. Commun. 2018; 54: 547
- 7e Kim H, Yonekura Y, Yoshida J. Angew. Chem. Int. Ed. 2018; 57: 4063
- 7f Kim H, Yin Z, Sakurai H, Yoshida J. React. Chem. Eng. 2018; 3: 635
- 7g Lee H.-J, Kim H, Kim D.-P. Chem. Eur. J. 2019; 25: 11641
- 7h Lee H.-J, Roberts RC, Im DJ, Yim S.-J, Kim H, Kim JT, Kim D.-P. Small 2019; 15: 1905005
- 8a Newman SG, Jensen KF. Green Chem. 2013; 15: 1456
- 8b Pastor JC, Browne DL, Ley SV. Chem. Soc. Rev. 2013; 42: 8849
- 8c Fukuyama T, Totoki T, Ryu I. Green Chem. 2014; 16: 2042
- 8d Ley SV, Fitzpatrick DE, Myers RM, Battilocchio C, Inham RJ. Angew. Chem. Int. Ed. 2015; 54: 10122
- 8e Kobayashi S. Chem. Asian J. 2016; 11: 425
- 8f Cambié D, Bottecchia C, Straathof NJ. W, Hessel V, Noel T. Chem. Rev. 2016; 116: 10276
- 8g Plutschack MB, Pieber B, Gilmore K, Seeberger PH. Chem. Rev. 2017; 117: 11796
- 8h Shen G, Osako T, Nagaosa M, Uozumi Y. J. Org. Chem. 2018; 83: 7380
- 8i Arakawa Y, Ueta S, Okamoto T, Minagawa K, Imda Y. Synlett 2020; 31: 866
- 9 Romagnoli R, Baraldi PG, Carrion MD, Cruz-Lopez O, Cara CL, Basso G, Viola G, Khedr M, Balzarini J, Mahboobi S, Sellmer A, Brancale A, Hamel E. J. Med. Chem. 2009; 52: 5551