Synthesis 2020; 52(22): 3326-3336
DOI: 10.1055/s-0040-1707256
short review

Catalytic C–H Arylation of Tetrathiafulvalenes for the Synthesis of Functional Materials

a   Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan   Email: yori@kuchem.kyoto-u.ac.jp
,
b   Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
c   Research Unit for Power Generation and Storage Materials, Ehime University, Matsuyama, Ehime 790-8577, Japan
,
b   Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
c   Research Unit for Power Generation and Storage Materials, Ehime University, Matsuyama, Ehime 790-8577, Japan
d   Research Unit for Development of Organic Superconductors, Ehime University, Matsuyama, Ehime 790-8577, Japan
› Author Affiliations
This work was supported by JSPS KAKENHI Grant Numbers JP19H00895 and JP19H02690 as well as by JST CREST Grant Number JPMJCR19R4. Furthermore, this work was supported by a Grant-in-Aid for Research Promotion (Ehime University) to the Research Unit for Development of Organic Superconductors and to the Research Unit for Power Generation and Storage Materials.


Abstract

Sulfur-containing functional π-conjugated cores play key roles in materials science, mostly due to their unique electrochemical and photophysical properties. Among these, the excellent electron donor tetrathiafulvalene (TTF) has occupied a central position since the emergence of organic electronics. Peripheral C–H modification of this highly useful sulfur-containing motif has resulted in the efficient creation of new molecules that expand the applications of TTFs. This Short Review begins with the development of the palladium-catalyzed direct C–H arylation of TTF. Subsequently, it summarizes the applications of this efficient C–H transformation for the straightforward synthesis of useful TTF derivatives that are employed in a variety of research fields, demonstrating that the development of a new reaction can have a significant impact on chemical science.

1 Introduction

2 Development of the Palladium-Catalyzed Direct C–H Arylation of TTF

3 Synthesis of TTF-Based Tetrabenzoic Acid and Tetrapyridine for MOFs

4 Synthesis of TTF-Based Tetrabenzaldehyde and Tetraaniline for COFs

5 Tetraarylation of TTFAQ

6 Synthesis of Multistage-Redox TTF Derivatives

7 Miscellaneous Examples

8 Conclusions



Publication History

Received: 19 June 2020

Accepted after revision: 16 July 2020

Article published online:
08 September 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Zhang G, Zhao J, Chow PC. Y, Jiang K, Zhang J, Zhu Z, Zhang J, Huang F, Yan H. Chem. Rev. 2018; 118: 3447
    • 1b Cheng P, Li G, Zhang X, Yang Y. Nat. Photonics 2018; 12: 131
    • 1c Nielsen CB, Holliday S, Chen H.-Y, Cryer SJ, McCulloch I. Acc. Chem. Res. 2015; 48: 2803
    • 1d Mishra A, Bäuerle P. Angew. Chem. Int. Ed. 2012; 51: 2020
    • 1e Lin Y, Li Y, Zhan X. Chem. Soc. Rev. 2012; 41: 4245
    • 1f Wang C, Dong H, Hu W, Liu Y, Zhu D. Chem. Rev. 2012; 112: 2208
    • 1g Figueira-Duarte TM, Müllen K. Chem. Rev. 2011; 111: 7260
    • 1h Zhan X, Facchetti A, Barlow S, Marks TJ, Ratner MA, Wasielewski MR, Marder SR. Adv. Mater. 2011; 23: 268
    • 1i Allard S, Forster M, Souharce B, Thiem H, Scherf U. Angew. Chem. Int. Ed. 2008; 47: 4070
    • 2a Takimiya K, Nakano M. Bull. Chem. Soc. Jpn. 2018; 91: 121
    • 2b Turkoglu G, Cinar ME, Ozturk T. Top. Curr. Chem. 2017; 375: 84
    • 2c Takimiya K, Osaka I, Mori T, Nakano M. Acc. Chem. Res. 2014; 47: 1493
    • 2d Takimiya K, Shinamura S, Osaka I, Miyazaki E. Adv. Mater. 2011; 23: 4347
    • 2e Iwanaga T, Yamada Y, Yamauchi T, Misaki Y, Inoue M, Yamada H. Chem. Lett. 2018; 47: 760 ; and references cited therein
    • 3a TTF Chemistry . Yamada J, Sugimoto T. Kodansha-Springer; Tokyo: 2004
    • 3b Hasegawa M, Iyoda M. In Organic Redox Systems . Nishinaga T. Wiley; New Jersey: 2016. Chap. 4, 89
    • 3c Segura JL, Martín N. Angew. Chem. Int. Ed. 2001; 40: 1372
    • 3d Bendikov M, Wudl F, Perepichka DF. Chem. Rev. 2004; 104: 4891
    • 3e Yamada J, Akutsu H, Nishikawa H, Kikuchi K. Chem. Rev. 2004; 104: 5057
    • 3f Iyoda M, Hasegawa M, Miyake Y. Chem. Rev. 2004; 104: 5085
    • 3g Jérome D. Chem. Rev. 2004; 104: 5565
    • 3h Gorgues A, Hudhomme P, Sallé M. Chem. Rev. 2004; 104: 5151
    • 3i Otsubo T, Takimiya K. Bull. Chem. Soc. Jpn. 2004; 77: 43
    • 3j Saito G, Yoshida Y. Bull. Chem. Soc. Jpn. 2007; 80: 1
    • 3k Misaki Y. Sci. Technol. Adv. Mater. 2009; 10: 024301
    • 3l Canevet D, Sallé M, Zhang G, Zhang D, Zhu D. Chem. Commun. 2009; 2245
    • 3m Lorcy D, Bellec N, Fourmigué M, Avarvari N. Coord. Chem. Rev. 2009; 253: 1398
    • 3n Bergkamp JJ, Decurtins S, Liu S.-X. Chem. Soc. Rev. 2015; 44: 863
    • 3o Pop F, Avarvari N. Chem. Commun. 2015; 52: 7906
    • 4a Nishihara Y. Applied Cross-Coupling Reactions . Springer; Heidelberg: 2013
    • 4b Science of Synthesis, Cross Coupling and Heck-Type Reactions, Vol. 1, C–C Cross Coupling Using Organometallic Partners. Molander GA, Larhed M, Wolfe JP. Thieme; Stuttgart: 2013
    • 4c Metal-Catalyzed Cross-Coupling Reactions and More . de Meijere A, Bräse S, Oestreich M. Wiley-VCH; Weinheim: 2014
    • 4d Xu S, Kim EH, Wei A, Negishi E.-i. Sci. Tech. Adv. Mater. 2014; 15: 0442010
    • 4e Zani L, Dessì A, Franchi D, Calamante M, Reginato G, Mordini A. Coord. Chem. Rev. 2019; 392: 177

      For selected books, see:
    • 5a Activation of Unreactive Bonds and Organic Synthesis. Murai S. Springer; Heidelberg: 1999
    • 5b Hartung CG, Snieckus V. In Modern Arene Chemistry, Chap. 10 . Astruc D. Wiley-VCH; Weinheim: 2002: 330
    • 5c Activation and Functionalization of C–H Bonds . Goldberg KI, Goldman AS. Oxford University Press; Oxford: 2004
    • 5d Handbook of C–H Transformations . Dyker G. Wiley-VCH; Weinheim: 2005
    • 5e Directed Metalation . Chatani N. Springer; Heidelberg: 2007
    • 5f C–H Activation . Yu J.-Q, Shi Z. Springer; Heidelberg: 2010
    • 5g Science of Synthesis, Cross Coupling and Heck-Type Reactions, Vol. 3, Metal-Catalyzed Heck-Type Reactions and C—C Cross Coupling via C–H Activation. Molander GA, Larhed M, Wolfe J. Thieme; Stuttgart: 2013
    • 5h C–H Bond Activation in Organic Synthesis . Li JJ. CRC Press; Boca Raton: 2015
    • 5i Science of Synthesis, Catalytic Transformations via C–H Activation, Vol. 1. Yu J.-Q. Thieme; Stuttgart: 2015
    • 5j Science of Synthesis, Catalytic Transformations via C–H Activation, Vol. 2. Yu J.-Q. Thieme; Stuttgart: 2015
    • 5k C–H Bond Activation and Catalytic Functionalization, Vol. I. Dixneuf PH, Doucet H. Springer; Heidelberg: 2016
    • 5l C–H Bond Activation and Catalytic Functionalization, Vol. II. Dixneuf PH, Doucet H. Springer; Heidelberg: 2016

      For selected reviews, see:
    • 6a Raj S, Ano Y, Chatani N. Chem. Rev. 2020; 120: 1788
    • 6b Zhao Q, Meng G, Nolan SP, Szostak M. Chem. Rev. 2020; 120: 1981
    • 6c Kuang G, Liu G, Zhang X, Lu N, Peng Y, Xiao Q, Zhou Y. Synthesis 2020; 52: 993
    • 6d Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. Chem. Rev. 2019; 119: 2192
    • 6e Kuroda Y, Nakao Y. Chem. Lett. 2019; 48: 1092
    • 6f Murai M, Takai K. Synthesis 2019; 51: 40
    • 6g Antermite D, Bull JA. Synthesis 2019; 51: 3171
    • 6h Le Bras J, Muzart J. Synthesis 2019; 51: 2871
    • 6i Maraswami M, Loh T.-P. Synthesis 2019; 51: 1049
    • 6j Kancherla S, Jørgensen KB, Fernández-Ibáñez M. Á. Synthesis 2019; 51: 643
    • 6k Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BU. W, Schnürch M. Chem. Soc. Rev. 2018; 47: 6603
    • 6l Minami Y, Hiyama T. Chem. Lett. 2018; 47: 1
    • 6m Li Z.-K, Jia X.-S, Yin L. Synthesis 2018; 50: 4165
    • 6n Zhou W.-J, Zhang Y.-H, Gui Y.-Y, Sun L, Yu D.-G. Synthesis 2018; 50: 3359
    • 6o Verbitskiy EV, Rusinov GL, Chupakhin ON, Charushin VN. Synthesis 2018; 50: 193
    • 6p Chatani N. Bull. Chem. Soc. Jpn. 2018; 91: 211
    • 6q Yoshino T, Matsunaga S. Asian J. Org. Chem. 2018; 7: 1193
    • 6r Kommagalla Y, Chatani N. Coord. Chem. Rev. 2017; 350: 117
    • 6s Shang R, Ilies L, Nakamura E. Chem. Rev. 2017; 117: 9086
    • 6t Murakami K, Yamada S, Kaneda T, Itami K. Chem. Rev. 2017; 117: 9302
    • 6u Fuse S, Morita T, Nakamura H. Synthesis 2017; 49: 2351
    • 6v Yoshino T, Matsunaga S. Adv. Synth. Catal. 2017; 359: 1245
    • 6w Yamaguchi J, Itami K. Bull. Chem. Soc. Jpn. 2017; 90: 367
    • 6x Gensch T, Hopkinson MN, Glorius F, Wencel-Delord J. Chem. Soc. Rev. 2016; 45: 2900
    • 6y Davies HM. L, Morton D. J. Org. Chem. 2016; 81: 343
    • 6z Bheeter CB, Chen L, Soulé J.-F, Doucet H. Catal. Sci. Technol. 2016; 6: 2005
    • 6aa Miao J, Ge H. Eur. J. Org. Chem. 2015; 7859
    • 6ab Daugulis O, Roane J, Tran LD. Acc. Chem. Res. 2015; 48: 1053
    • 6ac Chen Z, Wang B, Zhang J, Yu W, Liu Z, Zhang Y. Org. Chem. Front. 2015; 2: 1107
    • 6ad Iwai T, Sawamura M. ACS Catal. 2015; 5: 5031
    • 6ae Castro LC. M, Chatani N. Chem. Lett. 2015; 44: 410
    • 6af Rossi R, Bellina F, Lessi M, Manzini C. Adv. Synth. Catal. 2014; 356: 17
    • 6ag El Kazzouli S, Koubachi J, El Brahmi N, Guillaumet G. RSC Adv. 2015; 5: 15292
    • 6ah Giri R, Thapa S, Kafle A. Adv. Synth. Catal. 2014; 356: 1395
    • 6ai Rossi R, Bellina F, Lessi M, Manzini C, Perego LA. Synthesis 2014; 46: 2833
    • 6aj Rouquet G, Chatani N. Angew. Chem. Int. Ed. 2013; 52: 11726
    • 6ak Shibahara F, Murai T. Asian J. Org. Chem. 2013; 2: 624
    • 6al Nishino M, Hirano K, Satoh T, Miura M. Angew. Chem. Int. Ed. 2013; 52: 4457
    • 6am Yamaguchi J, Muto K, Itami K. Eur. J. Org. Chem. 2013; 19
    • 6an Arockiam PB, Bruneau C, Dixneuf PH. Chem. Rev. 2012; 112: 5879
    • 6ao Engle KM, Mei T.-S, Wasa M, Yu J.-Q. Acc. Chem. Res. 2012; 45: 788
    • 6ap Yeung CS, Dong VM. Chem. Rev. 2011; 111: 1215
    • 6aq Wencel-Delord J, Dröge T, Liu F, Glorius F. Chem. Soc. Rev. 2011; 40: 4740
    • 6ar McMurray L, O’Hara F, Gaunt MJ. Chem. Soc. Rev. 2011; 40: 1885
    • 6as Nakao Y. Synthesis 2011; 3209
    • 6at Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
    • 6au Colby DA, Bergman RG, Ellman JA. Chem. Rev. 2010; 110: 624
    • 6av Satoh T, Miura M. Chem. Eur. J. 2010; 16: 11212
    • 6aw Roger J, Gottumukkala AL, Doucet H. ChemCatChem 2010; 2: 20
    • 6ax Kulkarni AA, Daugulis O. Synthesis 2009; 4087
    • 6ay Giri R, Shi B.-F, Engle KM, Maugel N, Yu J.-Q. Chem. Soc. Rev. 2009; 38: 3242
    • 6az Chen X, Engle KM, Wang D.-H, Yu J.-Q. Angew. Chem. Int. Ed. 2009; 48: 5094
    • 6ba Ackermann L, Vicente R, Kapdi AR. Angew. Chem. Int. Ed. 2009; 48: 9792
    • 6bb Kakiuchi F, Kochi T. Synthesis 2008; 3013
    • 6bc Alberico D, Scott ME, Lautens M. Chem. Rev. 2007; 107: 174
    • 6bd Kakiuchi F, Chatani N. Adv. Synth. Catal. 2003; 345: 1077
    • 6be Ishiyama T, Miyaura N. J. Organomet. Chem. 2003; 680: 3
    • 6bf Kakiuchi F, Murai S. Acc. Chem. Res. 2002; 35: 826
    • 6bg Jia C, Kitamura T, Fujiwara Y. Acc. Chem. Res. 2001; 34: 633
    • 6bh Shilov AE, Shul’pin GB. Chem. Rev. 1997; 97: 2879

      For reviews on C–H functionalization reactions for the synthesis of discrete π-conjugated materials, see:
    • 7a Ito H, Segawa Y, Murakami K, Itami K. J. Am. Chem. Soc. 2019; 141: 3
    • 7b Ito H, Ozaki K, Itami K. Angew. Chem. Int. Ed. 2017; 56: 11144
    • 7c Hiroto S, Miyake Y, Shinokubo H. Chem. Rev. 2017; 117: 2910
    • 7d Besson T, Fruit C. Synthesis 2016; 48: 3879
    • 7e Shi Y, Ni Z, Zhen Y, Dong H, Hu W. Chin. J. Org. Chem. 2016; 36: 1741
    • 7f Kuninobu Y, Sueki S. Synthesis 2015; 47: 3823
    • 7g Shinokubo H. Proc. Jpn. Acad., Ser. B 2014; 90: 1
    • 7h Wencel-Delord J, Glorius F. Nat. Chem. 2013; 5: 369
    • 7i Yorimitsu H, Osuka A. Asian J. Org. Chem. 2013; 2: 356
    • 7j Yamaguchi J, Yamaguchi AD, Itami K. Angew. Chem. Int. Ed. 2012; 51: 8960
    • 7k Shinokubo H, Osuka A. Chem. Commun. 2009; 1011

      For reviews on C–H arylation reactions for the synthesis of polymers, see:
    • 8a Amna B, Siddiqi HM, Hassan A, Ozturk T. RSC Adv. 2020; 10: 4322
    • 8b Blaskovits JT, Leclerc M. Macromol. Rapid Commun. 2019; 40: 1800512
    • 8c Kuwabara J, Kinbara T. Bull. Chem. Soc. Jpn. 2019; 92: 152
    • 8d Wakioka M, Ozawa F. Asian J. Org. Chem. 2018; 7: 1206
    • 8e Gobalasingham NS, Thompson BC. Prog. Polym. Sci. 2018; 83: 135
    • 8f Yang Y, Nishiura M, Wang H, Hou Z. Coord. Chem. Rev. 2018; 376: 506
    • 8g Bura T, Blaskovits JT, Leclerc M. J. Am. Chem. Soc. 2016; 138: 10056
    • 8h Pouliot J.-R, Grenier F, Blaskovits JT, Beaupré S, Leclerc M. Chem. Rev. 2016; 116: 14225
    • 8i Okamoto K, Zhang J, Housekeeper JB, Marder SR, Luscombe CK. Macromolecules 2013; 46: 8059
    • 8j Mercier LG.. Leclerc M. Acc. Chem. Res. 2013; 46: 1597

      For selected examples, see:
    • 9a Iyoda M, Kuwatani Y, Ueno N, Oda M. J. Chem. Soc., Chem. Commun. 1992; 158
    • 9b Iyoda M, Fukuda M, Yoshida M, Sasaki S. Chem. Lett. 1994; 2369
    • 9c Kux U, Iyoda M. Chem. Lett. 1994; 2327
    • 9d Iyoda M, Fukuda M, Sasaki S, Yoshida M. Synth. Met. 1995; 70: 1171
    • 9e Nakatsuji S, Satoki S, Suzuki K, Enoki T, Kinoshita N, Anzai H. Synth. Met. 1995; 71: 1819
    • 9f Skabara PJ, Müllen K, Bryce MR, Howard JA. K, Batsanov AS. J. Mater. Chem. 1998; 8: 1719
    • 9g Nakazaki J, Matsushita MM, Izuoka A, Sugawara T. Tetrahedron Lett. 1999; 40: 5027
    • 9h Iyoda M, Hasegawa M, Kuwatani Y, Nishikawa H, Fukami K, Nagase S, Yamamoto G. Chem. Lett. 2001; 1146
    • 9i Moore AJ, Batsanov AS, Bryce MR, Howard JA. K, Khodorkovsky V, Shapiro L, Shames A. Eur. J. Org. Chem. 2001; 73
    • 9j Bouguessa S, Gouasmia AK, Golhen S, Ouahab L, Fabre JM. Tetrahedron Lett. 2003; 44: 9275
    • 9k Murata T, Morita Y, Fukui K, Sato K, Shiomi D, Takui T, Maesato M, Yamochi H, Saito G, Nakasuji K. Angew. Chem. Int. Ed. 2004; 43: 6343
    • 9l Nishida S, Morita Y, Fukui K, Sato K, Shiomi D, Takui T, Nakasuji K. Angew. Chem. Int. Ed. 2005; 44: 7277
    • 9m Wang L, Zhang B, Zhang J. Inorg. Chem. 2006; 45: 6860
    • 9n Kanato H, Narutaki M, Takimiya K, Otsubo T, Harima Y. Chem. Lett. 2006; 35: 668
    • 9o Chahma M, Wang X, van der Est A, Pilkington M. J. Org. Chem. 2006; 71: 2750
    • 9p Lamère JF, Malfant I, Sornia-Saquet A, Lacroix PG, Fabre JM, Kaboub L, Abbaz T, Gouasmia AK, Asselberghs I, Clays K. Chem. Mater. 2007; 19: 805
    • 9q Abbz T, Gouasmia A.-K, Fujiwara H, Hiraoka T, Sugimoto T, Taillefer M, Fabre J.-M. Synth. Met. 2007; 157: 508
    • 9r Murata T, Morita Y, Yakiyama Y, Fukui K, Yamochi H, Saito G, Nakasuji K. J. Am. Chem. Soc. 2007; 129: 10837
    • 9s Fujiwara H, Sugishima Y, Tsujimoto K. Tetrahedron Lett. 2008; 49: 7200
    • 9t Wang Y, Cui S, Li B, Zhang J, Zhang Y. Cryst. Growth Des. 2009; 9: 3855
    • 9u Carmieli R, Mi Q, Ricks AB, Giacobbe EM, Mickley SM, Wasielewski MR. J. Am. Chem. Soc. 2009; 131: 8372
    • 9v Riobé F, Avarvari N, Grosshans P, Sidorenkova H, Berclaz T, Geoffroy M. Phys. Chem. Chem. Phys. 2010; 12: 9650
    • 9w Bouguessa S, Gouasmia AK, Ouahab L, Golhen S, Fabre J.-M. Synth. Met. 2010; 160: 361
    • 9x Lee SC, Ueda A, Kamo H, Takahashi K, Uruichi M, Yamamoto K, Yakushi K, Nakao A, Kumai R, Kobayashi K, Nakao H, Murakami Y, Mori H. Chem. Commun. 2012; 48: 8673
    • 9y Pointillart F, Bourdolle A, Cauchy T, Maury O, Gal YL, Golhen S, Cador O, Ouahab L. Inorg. Chem. 2012; 51: 978
    • 9z Hasegawa M, Daigoku K, Hashimoto K, Nishikawa H, Iyoda M. Bull. Chem. Soc. Jpn. 2012; 85: 51
    • 9aa Poddutoori PK, Zarrabi N, Moiseev AG, Gumbau-abrisa R, Vassiliev S, van der Est A. Chem. Eur. J. 2013; 19: 3148
    • 9ab Tsujimoto K, Ogasawara R, Fujiwara H. Tetrahedron Lett. 2013; 54: 1251
    • 9ac Lee SC, Ueda A, Nakao A, Kumai R, Nakao H, Murakami Y, Mori H. Chem. Eur. J. 2014; 20: 1909
    • 9ad Tsunashima R, Iwamoto Y, Baba Y, Kato C, Ichihashi K, Nishihara S, Inoue K, Ishiguro K, Song Y.-F, Akutagawa T. Angew. Chem. Int. Ed. 2014; 53: 11228
    • 9ae Hayward JJ, Gumbau-Brisa R, Alberola A, Clarke CS, Rawson JM, Pilkington M. CrystEngComm 2014; 16: 7268
    • 9af Kobayakawa K, Hasegawa M, Sasaki H, Endo J, Matsuzawa H, Sako K, Yoshida J, Mazaki Y. Chem. Asian J. 2014; 9: 2751
    • 9ag Geng Y, Pop F, Yi C, Avarvari N, Grätzel M, Decurtins S, Liu S.-X. New. J. Chem. 2014; 38: 3269
    • 9ah Ayadi A, Alamy AE, Alévêque O, Allain M, Zouari N, Bouachrine M, El-Ghayoury A. Beilstein J. Org. Chem. 2015; 11: 1379
    • 9ai Nafe J, Auras F, Karaghiosoff K, Bein T, Knochel P. Org. Lett. 2015; 17: 5356
    • 9aj Nafe J, Knochel P. Synthesis 2016; 48: 103
    • 9ak Okino R, Yamaguchi M, Fujiwara H. Dalton Trans. 2017; 46: 4912
    • 9al Kanetou T, Tsunashima R, Hoshino N, Akutagawa T. RSC Adv. 2017; 7: 6236
    • 9am Kishi Y, Cornet L, Pointillart F, Riobé F, Lefeuvre B, Cador O, Guennic BL, Maury O, Fujiwara H, Ouahab L. Eur. J. Org. Chem. 2018; 458
    • 9an Stetsiuk O, Petrusenko SR, El-Ghayoury A, Kokozay VN, Avarvari N. Inorg. Chim. Acta 2018; 475: 172
    • 9ao Zarrabi N, Lim GN, Bayard BJ, D’Souza F, Poddutoori PK. Phys. Chem. Chem. Phys. 2019; 21: 19612
    • 9ap Yoshimura A, Kimura H, Handa A, Hashimoto N, Yano M, Mori S, Shirahata T, Hayashi M, Misaki Y. Tetrahedron Lett. 2020; 61: 151724
  • 10 Mitamura Y, Yorimitsu H, Oshima K, Osuka A. Chem. Sci. 2011; 2: 2017
    • 11a Dyker G, Heiermann J, Miura M, Inoh J.-I, Pivsa-Art S, Satoh T, Nomura M. Chem. Eur. J. 2000; 6: 3426
    • 11b Miura M, Pivsa-Art S, Dyker G, Heiermann J, Satoh T, Nomura M. Chem. Commun. 1998; 1889
  • 12 Dolphin D, Pegg W, Wirz P. Can. J. Chem. 1974; 52: 4078
    • 13a Lapointe D, Fagnou K. Chem. Lett. 2010; 39: 1118
    • 13b Lafrance M, Fagnou K. J. Am. Chem. Soc. 2006; 128: 16496
    • 13c García-Cuadrado D, Braga AA. C, Maseras F, Echavarren AM. J. Am. Chem. Soc. 2006; 128: 1066
    • 13d García-Cuadrado D, de Mendoza P, Braga AA. C, Maseras F, Echavarren AM. J. Am. Chem. Soc. 2007; 129: 6880
  • 14 Netherton MR, Fu GC. Org. Lett. 2001; 3: 4295
    • 15a Lengthy synthesis: Charlton A, Underhill AE, Williams G, Kalaji M, Murphy PJ, Hibbs DE, Hursthouse MB, Malik KM. A. Chem. Commun. 1996; 2423
    • 15b Condensation of diarylacetylene with carbon disulfide under 4500 atm: Nagawa T, Zama Y, Okamoto Y. Bull. Chem. Soc. Jpn. 1984; 57: 2035
  • 16 Ueno R, Fujino D, Yorimitsu H, Osuka A. Chem. Eur. J. 2013; 19: 7156
    • 17a Sun L, Campbell MG, Dincă M. Angew. Chem. Int. Ed. 2016; 55: 3566
    • 17b Wang H.-Y, Cui L, Xie J.-Z, Leong CF, D’Alessandro DM, Zuo J.-L. Coord. Chem. Rev. 2017; 345: 342
    • 17c Jana A, Bähring S, Ishida M, Goeb S, Canevet D, Sallé M, Jeppesen JO, Sessler JL. Chem. Soc. Rev. 2018; 47: 5614
    • 17d Calbo J, Golomb MJ, Walsh A. J. Mater. Chem. A 2019; 7: 16571
  • 18 Narayan TC, Miyakai T, Seki S, Dincă M. J. Am. Chem. Soc. 2012; 134: 12932
    • 19a Park SS, Hontz ER, Sun L, Hendon CH, Walsh A, Van Voorhis T, Dincă M. J. Am. Chem. Soc. 2015; 137: 1774
    • 19b Chen B, Lv Z.-P, Leong CF, Zhao Y, D’Alessandro DM, Zuo J.-L. Cryst. Growth. Des. 2015; 15: 1861
    • 19c Sun L, Park SS, Sheberla D, Dincă M. J. Am. Chem. Soc. 2016; 138: 14772
    • 19d Park SS, Hendon CH, Fielding AJ, Walsh A, O’Keeffe M, Dincă M. J. Am. Chem. Soc. 2017; 139: 3619
    • 19e Su J, Yuan S, Wang H.-Y, Huang L, Ge J.-Y, Joseph E, Qin J, Cagin T, Zuo J.-L, Zhou H.-C. Nat. Commun. 2017; 8: 2008
    • 19f Park SS, Rieth AJ, Hendon CH, Dincă M. J. Am. Chem. Soc. 2018; 140: 2016
    • 19g Souto M, Romero J, Calbo J, Vitórica-Yrezábal IJ, Zafra JL, Casado J, Ortí E, Walsh A, Espallargas GM. J. Am. Chem. Soc. 2018; 140: 10562
    • 19h Souto M, Santiago-Portillo A, Palomino M, Vitórica-Yrezábal IJ, Vieira BJ. C, Waerenborgh JC, Valencia S, Navalón S, Rey F, García H, Mínguez Espallargas G. Chem. Sci. 2018; 9: 2413
    • 19i Leong CF, Wang C.-H, Ling CD, D’Alessandro DM. Polyhedron 2018; 154: 334
    • 19j Su J, Hu T.-H, Murase R, Wang H.-Y, D’Alessandro DM, Kurmoo M, Zuo J.-L. Inorg. Chem. 2019; 58: 3698
    • 19k Pattengale B, Neu J, Ostresh S, Hu G, Spies JA, Okabe R, Brudvig GW, Schmuttenmaer CA. J. Am. Chem. Soc. 2019; 141: 9793
    • 19l Castells-Gil J, Mañas-Valero S, Vitórica-Yrezábal IJ, Ananias D, Rocha J, Santiago R, Bromley ST, Baldoví JJ, Coronado E, Souto M, Mínguez Espallargas G. Chem. Eur. J. 2019; 25: 12636
    • 19m Cadiau A, Xie LS, Kolobov N, Shkurenko A, Qureshi M, Tchalala MR, Park SS, Bavykina A, Eddaoudi M, Dincă M, Henden CH, Gascon J. Chem. Mater. 2020; 32: 97
    • 19n Wang F, Wang J, Maehrlein SF, Ma Y, Liu F, Zhu X.-Y. J. Phys. Chem. Lett. 2020; 11: 762
    • 19o Su J, He W, Li X.-M, Sun L, Wang H.-Y, Lan Y.-Q, Ding M, Zuo J.-L. Matter 2020; 2: 711
    • 20a Hisaki I, Affendy EN. Q, Tohnai N. CrystEngComm 2017; 19: 4892
    • 20b Zheng X, Xiao N, Long Z, Wang L, Ye F, Fang J, Shen L, Xiao X. Synth. Met. 2020; 263: 116365
  • 21 Lv Z.-P, Chen B, Wang H.-Y, Wu Y, Zuo J.-L. Small 2015; 11: 3597
  • 22 Liu L, Zhou S, Zhao C, Jiu T, Bi F, Jian H, Zhao M, Zhang G, Wang L, Li F, Xiao X. J. Energy Chem. 2020; 42: 210
  • 23 Vajpayee V, Bivaud S, Goeb S, Croué V, Allain M, Popp BV, Garci A, Therrien B, Sallé M. Organometallics 2014; 33: 1651 . In this paper, ruthenium complexes of tetra(3-pyridyl) 1m were also reported
  • 24 Goeb S, Bivaud S, Croué V, Vajpayee V, Allain M, Sallé M. Materials 2014; 7: 611
  • 25 Tzeng B.-C, Hsiao Y.-J, Lee G.-H, Wang H.-Y, Leong CF, D’Alessandro DM, Zuo J.-L. Dalton Trans. 2019;  48: 7946
    • 26a Wang H.-Y, Wu Y, Leong CF, D’Alessandro DM, Zuo J.-L. Inorg. Chem. 2015; 54: 10766
    • 26b Wang H.-Y, Ge J.-Y, Hua C, Jiao C.-Q, Wu Y, Leong CF, D’Alessandro DM, Liu T, Zuo J.-L. Angew. Chem. Int. Ed. 2017;  56: 5465
    • 26c Wang H.-Y, Su J, Ma J.-P, Yu F, Leong CF, D’Alessandro DM, Kurmoo M, Zuo J.-L. Inorg. Chem. 2019; 58: 8657
    • 26d Yu Q, Su J, Ma J.-P, Leong CF, D’Alessandro DM, Wang H.-Y, Kurmoo M, Zuo J.-L. Cryst. Growth Des. 2019; 19: 3012
  • 27 Jin S, Sakurai T, Kowalczyk T, Dalapati S, Xu F, Wei H, Chen X, Gao J, Seki S, Irle S, Jiang D. Chem. Eur. J. 2014;  20: 14608
  • 28 Ding H, Li Y, Hu H, Sun Y, Wang J, Wang C, Wang C, Zhang G, Wang B, Xu W, Zhang D. Chem. Eur. J. 2014; 20: 14614
  • 29 Cai S.-L, Zhang Y.-B, Pun AB, He B, Yang J, Toma FM, Sharp ID, Yaghi OM, Fan J, Zheng S.-R, Zhang W.-G, Liu Y. Chem. Sci. 2014; 5: 4693
    • 30a Dong W.-l, Wang L, Ding H.-m, Zhao L, Wang D, Wang C, Wan L.-J. Langmuir 2015; 31: 11755
    • 30b Dong W.-L, Li S.-Y, Yue J.-Y, Wang C, Wang D, Wan L.-J. Phys. Chem. Chem. Phys. 2016; 18: 17356
  • 31 Li H, Chang J, Li S, Guan X, Li D, Li C, Tang L, Xue M, Yan Y, Valtchev V, Qiu S, Fang Q. J. Am. Chem. Soc. 2019; 141: 13324
    • 32a Lu M, Liu J, Li Q, Zhang M, Liu M, Wang J.-L, Yuan D.-Q, Lan Y.-Q. Angew. Chem. Int. Ed. 2019; 58: 12392
    • 32b Zhu H.-J, Lu M, Wang Y.-R, Yao S.-J, Zhang M, Kan Y.-H, Liu J, Chen Y, Li S.-L, Lan Y.-Q. Nat. Commun. 2020; 11: 497
    • 32c Wu Q, Xie R.-K, Mao M.-J, Chai G.-L, Yi J.-D, Zhao S.-S, Huang Y.-B, Cao R. ACS Energy Lett. 2020; 5: 1005
  • 33 Cai S, Sun B, Li X, Yan Y, Navarro A, Garzón-Ruiz A, Mao H, Chatterjee R, Yano J, Zhu C, Reimer JA, Zheng S, Fan J, Zhang W, Liu Y. ACS Appl. Mater. Interfaces 2020; 12: 19054
  • 34 Zhang Y.-C, Zhou Y, Li Z.-T, Zhang D.-W. Tetrahedron 2015; 71: 605
    • 35a Akiba K.-y, Ishikawa K, Inamoto N. Bull. Chem. Soc. Jpn. 1978; 51: 2674
    • 35b Bryce MR, Moore AJ. Synth. Met. 1988; 25: 203
    • 35c Bryce MR, Moore AJ, Hasan M, Ashwell GJ, Fraser AT, Clegg W, Hursthouse MB, Karaulov AI. Angew. Chem. Int. Ed. 1990; 29: 1450
    • 35d Bryce MR, Finn T, Moore AJ, Batsanov AS, Howard JA. K. Eur. J. Org. Chem. 2000; 51
    • 35e Jones AE, Christensen CA, Perepichka DF, Batsanov AS, Beeby A, Low PJ, Bryce MR, Parker AW. Chem. Eur. J. 2001; 7: 973
    • 35f Barthelmes K, Sittig M, Winter A, Schubert US. Eur. J. Inorg. Chem. 2017; 3698
    • 35g Hachem H, Vacher A, Dorcet V, Lorcy D. Organometallics 2017; 36: 2208
    • 36a Martín N, Sańchez L, Herranz MÁ, Illescas B, Guldi DM. Acc. Chem. Res. 2007; 40: 1015
    • 36b Wenger S, Bouit P.-A, Chen Q, Teuscher J, Di Censo D, Humphry-Baker R, Moser J.-E, Delgado JL, Martín N, Zakeeruddin SM, Grätzel M. J. Am. Chem. Soc. 2010; 132: 5164
    • 37a Ogi D, Fujita Y, Kato M, Yamauchi T, Shirahata T, Yao M, Misaki Y. Eur. J. Org. Chem. 2019; 2725
    • 37b Yamauchi T, Kato M, Shirahata T, Yao M, Misaki Y. Chem. Lett. 2019; 48: 1507

      For other uses, see:
    • 38a Hardouin-Lerouge M, Chesneau B, Allain M, Hudhomme P. J. Org. Chem. 2012; 77: 2441
    • 38b Isla H, Gallego M, Pérez EM, Viruela R, Ortí E, Martín N. J. Am. Chem. Soc. 2010; 132: 1772
  • 39 Bivaud S, Goeb S, Croué V, Dron PI, Allain M, Sallé M. J. Am. Chem. Soc. 2013; 135: 10018
    • 40a Bivaud S, Goeb S, Croué V, Allain M, Pop F, Sallé M. Beilstein J. Org. Chem. 2015; 11: 966
    • 40b Croué V, Goeb S, Szalóki G, Allain M, Sallé M. Angew. Chem. Int. Ed. 2016; 55: 1746
    • 40c Szalóki G, Croué V, Allain M, Goeb S, Sallé M. Chem. Commun. 2016; 52: 10012
    • 40d Szalóki G, Croué V, Carré V, Aubriet F, Alévêque O, Levillain E, Allain M, Aragó J, Ortí E, Goeb S, Sallé M. Angew. Chem. Int. Ed. 2017; 56: 16272
    • 40e Colomban C, Szalóki G, Allain M, Gómez L, Goeb S, Sallé M, Costas M, Ribas X. Chem. Eur. J. 2017; 23: 3016
    • 40f Szalóki G, Krykun S, Croué V, Allain M, Morille Y, Aubriet F, Carré V, Voitenko Z, Goeb S, Sallé M. Chem. Eur. J. 2018; 24: 11273
  • 41 Yoshimura A, Henmi K, Kimura H, Sakakibara R, Ochi R, Shirahata T, Yorimitsu H, Misaki Y. Synthesis 2020; 52 DOI: in press; 10.1055/s-0040-1707177.
  • 42 Gordillo MA, Benavides PA, Panda DK, Saha S. ACS Appl. Mater. Interfaces 2020; 12: 12955
  • 43 Yoshimura A, Kimura H, Kagawa K, Yoshioka M, Itou T, Vasu D, Shirahata T, Yorimitsu H, Misaki Y. Beilstein J. Org. Chem. 2020; 16: 974
  • 44 Gholami M, Tykwinski RR. Chem. Rev. 2006; 106: 4997
    • 45a Sugimoto T, Awaji H, Misaki Y, Yoshida Z, Kai Y, Nakagawa H, Kasai N. J. Am. Chem. Soc. 1985; 107: 5792
    • 45b Sugimoto T, Misaki Y, Arai Y, Yamamoto Y, Yoshida Z, Kai Y, Kasai N. J. Am. Chem. Soc. 1988; 110: 628
    • 45c Misaki Y, Matsumura Y, Sugimoto T, Yoshida Z.-i. Tetrahedron Lett. 1989; 30: 5289
    • 45d Amaresh RR, Liu D, Konovalova T, Lakshmikantham MV, Cava MP, Kispert LD. J. Org. Chem. 2001; 66: 7757
    • 45e Rajagopal D, Lakshmikantham MV, Cava MP. Org. Lett. 2002; 4: 2581
    • 45f Coffin MA, Bryce MR, Batsanov AS, Howard JA. K. J. Chem. Soc., Chem. Commun. 1993; 552
    • 45g Bryce MR, Coffin MA, Skabara PJ, Moore AJ, Batsanov AS, Howard JA. K. Chem. Eur. J. 2000; 6: 1955
    • 45h Hasegawa M, Fujioka A, Kubo T, Honda T, Miyamoto H, Misaki Y. Chem. Lett. 2008; 37: 474
    • 45i Horiuchi H, Misaki Y. Chem. Lett. 2010; 39: 989
    • 45j Nishiwaki M, Tezuka M, Shirahata T, Misaki Y. Chem. Lett. 2011; 40: 467
    • 45k Yamauchi T, Shibata Y, Aki T, Yoshimura A, Yao M, Misaki Y. Chem. Lett. 2018; 47: 1176
  • 46 Shoji T, Araki T, Sugiyama S, Ohta A, Sekiguchi R, Ito S, Okujima T, Toyota K. J. Org. Chem. 2017; 82: 1657
    • 47a Nelson JN, Krzyaniak MD, Horwitz NE, Rugg BK, Phelan BT, Wasielewski MR. J. Phys. Chem. A 2017; 121: 2241
    • 47b Nelson JN, Zhang J, Zhou J, Rugg BK, Krzyaniak MD, Wasielewski MR. J. Phys. Chem. A 2018; 122: 9392
  • 48 Hasegawa M, Endo J, Iwata S, Shimasaki T, Mazaki Y. Beilstein J. Org. Chem. 2015; 11: 972