Subscribe to RSS
DOI: 10.1055/s-0040-1707256
Catalytic C–H Arylation of Tetrathiafulvalenes for the Synthesis of Functional Materials
This work was supported by JSPS KAKENHI Grant Numbers JP19H00895 and JP19H02690 as well as by JST CREST Grant Number JPMJCR19R4. Furthermore, this work was supported by a Grant-in-Aid for Research Promotion (Ehime University) to the Research Unit for Development of Organic Superconductors and to the Research Unit for Power Generation and Storage Materials.
Abstract
Sulfur-containing functional π-conjugated cores play key roles in materials science, mostly due to their unique electrochemical and photophysical properties. Among these, the excellent electron donor tetrathiafulvalene (TTF) has occupied a central position since the emergence of organic electronics. Peripheral C–H modification of this highly useful sulfur-containing motif has resulted in the efficient creation of new molecules that expand the applications of TTFs. This Short Review begins with the development of the palladium-catalyzed direct C–H arylation of TTF. Subsequently, it summarizes the applications of this efficient C–H transformation for the straightforward synthesis of useful TTF derivatives that are employed in a variety of research fields, demonstrating that the development of a new reaction can have a significant impact on chemical science.
1 Introduction
2 Development of the Palladium-Catalyzed Direct C–H Arylation of TTF
3 Synthesis of TTF-Based Tetrabenzoic Acid and Tetrapyridine for MOFs
4 Synthesis of TTF-Based Tetrabenzaldehyde and Tetraaniline for COFs
5 Tetraarylation of TTFAQ
6 Synthesis of Multistage-Redox TTF Derivatives
7 Miscellaneous Examples
8 Conclusions
Key words
C–H arylation - tetrathiafulvalene - sulfur - palladium catalysis - metal-organic framework - covalent organic framework - supramolecular chemistry - redox-active materialPublication History
Received: 19 June 2020
Accepted after revision: 16 July 2020
Article published online:
08 September 2020
© 2020. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Zhang G, Zhao J, Chow PC. Y, Jiang K, Zhang J, Zhu Z, Zhang J, Huang F, Yan H. Chem. Rev. 2018; 118: 3447
- 1b Cheng P, Li G, Zhang X, Yang Y. Nat. Photonics 2018; 12: 131
- 1c Nielsen CB, Holliday S, Chen H.-Y, Cryer SJ, McCulloch I. Acc. Chem. Res. 2015; 48: 2803
- 1d Mishra A, Bäuerle P. Angew. Chem. Int. Ed. 2012; 51: 2020
- 1e Lin Y, Li Y, Zhan X. Chem. Soc. Rev. 2012; 41: 4245
- 1f Wang C, Dong H, Hu W, Liu Y, Zhu D. Chem. Rev. 2012; 112: 2208
- 1g Figueira-Duarte TM, Müllen K. Chem. Rev. 2011; 111: 7260
- 1h Zhan X, Facchetti A, Barlow S, Marks TJ, Ratner MA, Wasielewski MR, Marder SR. Adv. Mater. 2011; 23: 268
- 1i Allard S, Forster M, Souharce B, Thiem H, Scherf U. Angew. Chem. Int. Ed. 2008; 47: 4070
- 2a Takimiya K, Nakano M. Bull. Chem. Soc. Jpn. 2018; 91: 121
- 2b Turkoglu G, Cinar ME, Ozturk T. Top. Curr. Chem. 2017; 375: 84
- 2c Takimiya K, Osaka I, Mori T, Nakano M. Acc. Chem. Res. 2014; 47: 1493
- 2d Takimiya K, Shinamura S, Osaka I, Miyazaki E. Adv. Mater. 2011; 23: 4347
- 2e Iwanaga T, Yamada Y, Yamauchi T, Misaki Y, Inoue M, Yamada H. Chem. Lett. 2018; 47: 760 ; and references cited therein
- 3a TTF Chemistry . Yamada J, Sugimoto T. Kodansha-Springer; Tokyo: 2004
- 3b Hasegawa M, Iyoda M. In Organic Redox Systems . Nishinaga T. Wiley; New Jersey: 2016. Chap. 4, 89
- 3c Segura JL, Martín N. Angew. Chem. Int. Ed. 2001; 40: 1372
- 3d Bendikov M, Wudl F, Perepichka DF. Chem. Rev. 2004; 104: 4891
- 3e Yamada J, Akutsu H, Nishikawa H, Kikuchi K. Chem. Rev. 2004; 104: 5057
- 3f Iyoda M, Hasegawa M, Miyake Y. Chem. Rev. 2004; 104: 5085
- 3g Jérome D. Chem. Rev. 2004; 104: 5565
- 3h Gorgues A, Hudhomme P, Sallé M. Chem. Rev. 2004; 104: 5151
- 3i Otsubo T, Takimiya K. Bull. Chem. Soc. Jpn. 2004; 77: 43
- 3j Saito G, Yoshida Y. Bull. Chem. Soc. Jpn. 2007; 80: 1
- 3k Misaki Y. Sci. Technol. Adv. Mater. 2009; 10: 024301
- 3l Canevet D, Sallé M, Zhang G, Zhang D, Zhu D. Chem. Commun. 2009; 2245
- 3m Lorcy D, Bellec N, Fourmigué M, Avarvari N. Coord. Chem. Rev. 2009; 253: 1398
- 3n Bergkamp JJ, Decurtins S, Liu S.-X. Chem. Soc. Rev. 2015; 44: 863
- 3o Pop F, Avarvari N. Chem. Commun. 2015; 52: 7906
- 4a Nishihara Y. Applied Cross-Coupling Reactions . Springer; Heidelberg: 2013
- 4b Science of Synthesis, Cross Coupling and Heck-Type Reactions, Vol. 1, C–C Cross Coupling Using Organometallic Partners. Molander GA, Larhed M, Wolfe JP. Thieme; Stuttgart: 2013
- 4c Metal-Catalyzed Cross-Coupling Reactions and More . de Meijere A, Bräse S, Oestreich M. Wiley-VCH; Weinheim: 2014
- 4d Xu S, Kim EH, Wei A, Negishi E.-i. Sci. Tech. Adv. Mater. 2014; 15: 0442010
- 4e Zani L, Dessì A, Franchi D, Calamante M, Reginato G, Mordini A. Coord. Chem. Rev. 2019; 392: 177
- 5a Activation of Unreactive Bonds and Organic Synthesis. Murai S. Springer; Heidelberg: 1999
- 5b Hartung CG, Snieckus V. In Modern Arene Chemistry, Chap. 10 . Astruc D. Wiley-VCH; Weinheim: 2002: 330
- 5c Activation and Functionalization of C–H Bonds . Goldberg KI, Goldman AS. Oxford University Press; Oxford: 2004
- 5d Handbook of C–H Transformations . Dyker G. Wiley-VCH; Weinheim: 2005
- 5e Directed Metalation . Chatani N. Springer; Heidelberg: 2007
- 5f C–H Activation . Yu J.-Q, Shi Z. Springer; Heidelberg: 2010
- 5g Science of Synthesis, Cross Coupling and Heck-Type Reactions, Vol. 3, Metal-Catalyzed Heck-Type Reactions and C—C Cross Coupling via C–H Activation. Molander GA, Larhed M, Wolfe J. Thieme; Stuttgart: 2013
- 5h C–H Bond Activation in Organic Synthesis . Li JJ. CRC Press; Boca Raton: 2015
- 5i Science of Synthesis, Catalytic Transformations via C–H Activation, Vol. 1. Yu J.-Q. Thieme; Stuttgart: 2015
- 5j Science of Synthesis, Catalytic Transformations via C–H Activation, Vol. 2. Yu J.-Q. Thieme; Stuttgart: 2015
- 5k C–H Bond Activation and Catalytic Functionalization, Vol. I. Dixneuf PH, Doucet H. Springer; Heidelberg: 2016
- 5l C–H Bond Activation and Catalytic Functionalization, Vol. II. Dixneuf PH, Doucet H. Springer; Heidelberg: 2016
- 6a Raj S, Ano Y, Chatani N. Chem. Rev. 2020; 120: 1788
- 6b Zhao Q, Meng G, Nolan SP, Szostak M. Chem. Rev. 2020; 120: 1981
- 6c Kuang G, Liu G, Zhang X, Lu N, Peng Y, Xiao Q, Zhou Y. Synthesis 2020; 52: 993
- 6d Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. Chem. Rev. 2019; 119: 2192
- 6e Kuroda Y, Nakao Y. Chem. Lett. 2019; 48: 1092
- 6f Murai M, Takai K. Synthesis 2019; 51: 40
- 6g Antermite D, Bull JA. Synthesis 2019; 51: 3171
- 6h Le Bras J, Muzart J. Synthesis 2019; 51: 2871
- 6i Maraswami M, Loh T.-P. Synthesis 2019; 51: 1049
- 6j Kancherla S, Jørgensen KB, Fernández-Ibáñez M. Á. Synthesis 2019; 51: 643
- 6k Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BU. W, Schnürch M. Chem. Soc. Rev. 2018; 47: 6603
- 6l Minami Y, Hiyama T. Chem. Lett. 2018; 47: 1
- 6m Li Z.-K, Jia X.-S, Yin L. Synthesis 2018; 50: 4165
- 6n Zhou W.-J, Zhang Y.-H, Gui Y.-Y, Sun L, Yu D.-G. Synthesis 2018; 50: 3359
- 6o Verbitskiy EV, Rusinov GL, Chupakhin ON, Charushin VN. Synthesis 2018; 50: 193
- 6p Chatani N. Bull. Chem. Soc. Jpn. 2018; 91: 211
- 6q Yoshino T, Matsunaga S. Asian J. Org. Chem. 2018; 7: 1193
- 6r Kommagalla Y, Chatani N. Coord. Chem. Rev. 2017; 350: 117
- 6s Shang R, Ilies L, Nakamura E. Chem. Rev. 2017; 117: 9086
- 6t Murakami K, Yamada S, Kaneda T, Itami K. Chem. Rev. 2017; 117: 9302
- 6u Fuse S, Morita T, Nakamura H. Synthesis 2017; 49: 2351
- 6v Yoshino T, Matsunaga S. Adv. Synth. Catal. 2017; 359: 1245
- 6w Yamaguchi J, Itami K. Bull. Chem. Soc. Jpn. 2017; 90: 367
- 6x Gensch T, Hopkinson MN, Glorius F, Wencel-Delord J. Chem. Soc. Rev. 2016; 45: 2900
- 6y Davies HM. L, Morton D. J. Org. Chem. 2016; 81: 343
- 6z Bheeter CB, Chen L, Soulé J.-F, Doucet H. Catal. Sci. Technol. 2016; 6: 2005
- 6aa Miao J, Ge H. Eur. J. Org. Chem. 2015; 7859
- 6ab Daugulis O, Roane J, Tran LD. Acc. Chem. Res. 2015; 48: 1053
- 6ac Chen Z, Wang B, Zhang J, Yu W, Liu Z, Zhang Y. Org. Chem. Front. 2015; 2: 1107
- 6ad Iwai T, Sawamura M. ACS Catal. 2015; 5: 5031
- 6ae Castro LC. M, Chatani N. Chem. Lett. 2015; 44: 410
- 6af Rossi R, Bellina F, Lessi M, Manzini C. Adv. Synth. Catal. 2014; 356: 17
- 6ag El Kazzouli S, Koubachi J, El Brahmi N, Guillaumet G. RSC Adv. 2015; 5: 15292
- 6ah Giri R, Thapa S, Kafle A. Adv. Synth. Catal. 2014; 356: 1395
- 6ai Rossi R, Bellina F, Lessi M, Manzini C, Perego LA. Synthesis 2014; 46: 2833
- 6aj Rouquet G, Chatani N. Angew. Chem. Int. Ed. 2013; 52: 11726
- 6ak Shibahara F, Murai T. Asian J. Org. Chem. 2013; 2: 624
- 6al Nishino M, Hirano K, Satoh T, Miura M. Angew. Chem. Int. Ed. 2013; 52: 4457
- 6am Yamaguchi J, Muto K, Itami K. Eur. J. Org. Chem. 2013; 19
- 6an Arockiam PB, Bruneau C, Dixneuf PH. Chem. Rev. 2012; 112: 5879
- 6ao Engle KM, Mei T.-S, Wasa M, Yu J.-Q. Acc. Chem. Res. 2012; 45: 788
- 6ap Yeung CS, Dong VM. Chem. Rev. 2011; 111: 1215
- 6aq Wencel-Delord J, Dröge T, Liu F, Glorius F. Chem. Soc. Rev. 2011; 40: 4740
- 6ar McMurray L, O’Hara F, Gaunt MJ. Chem. Soc. Rev. 2011; 40: 1885
- 6as Nakao Y. Synthesis 2011; 3209
- 6at Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
- 6au Colby DA, Bergman RG, Ellman JA. Chem. Rev. 2010; 110: 624
- 6av Satoh T, Miura M. Chem. Eur. J. 2010; 16: 11212
- 6aw Roger J, Gottumukkala AL, Doucet H. ChemCatChem 2010; 2: 20
- 6ax Kulkarni AA, Daugulis O. Synthesis 2009; 4087
- 6ay Giri R, Shi B.-F, Engle KM, Maugel N, Yu J.-Q. Chem. Soc. Rev. 2009; 38: 3242
- 6az Chen X, Engle KM, Wang D.-H, Yu J.-Q. Angew. Chem. Int. Ed. 2009; 48: 5094
- 6ba Ackermann L, Vicente R, Kapdi AR. Angew. Chem. Int. Ed. 2009; 48: 9792
- 6bb Kakiuchi F, Kochi T. Synthesis 2008; 3013
- 6bc Alberico D, Scott ME, Lautens M. Chem. Rev. 2007; 107: 174
- 6bd Kakiuchi F, Chatani N. Adv. Synth. Catal. 2003; 345: 1077
- 6be Ishiyama T, Miyaura N. J. Organomet. Chem. 2003; 680: 3
- 6bf Kakiuchi F, Murai S. Acc. Chem. Res. 2002; 35: 826
- 6bg Jia C, Kitamura T, Fujiwara Y. Acc. Chem. Res. 2001; 34: 633
- 6bh Shilov AE, Shul’pin GB. Chem. Rev. 1997; 97: 2879
- 7a Ito H, Segawa Y, Murakami K, Itami K. J. Am. Chem. Soc. 2019; 141: 3
- 7b Ito H, Ozaki K, Itami K. Angew. Chem. Int. Ed. 2017; 56: 11144
- 7c Hiroto S, Miyake Y, Shinokubo H. Chem. Rev. 2017; 117: 2910
- 7d Besson T, Fruit C. Synthesis 2016; 48: 3879
- 7e Shi Y, Ni Z, Zhen Y, Dong H, Hu W. Chin. J. Org. Chem. 2016; 36: 1741
- 7f Kuninobu Y, Sueki S. Synthesis 2015; 47: 3823
- 7g Shinokubo H. Proc. Jpn. Acad., Ser. B 2014; 90: 1
- 7h Wencel-Delord J, Glorius F. Nat. Chem. 2013; 5: 369
- 7i Yorimitsu H, Osuka A. Asian J. Org. Chem. 2013; 2: 356
- 7j Yamaguchi J, Yamaguchi AD, Itami K. Angew. Chem. Int. Ed. 2012; 51: 8960
- 7k Shinokubo H, Osuka A. Chem. Commun. 2009; 1011
- 8a Amna B, Siddiqi HM, Hassan A, Ozturk T. RSC Adv. 2020; 10: 4322
- 8b Blaskovits JT, Leclerc M. Macromol. Rapid Commun. 2019; 40: 1800512
- 8c Kuwabara J, Kinbara T. Bull. Chem. Soc. Jpn. 2019; 92: 152
- 8d Wakioka M, Ozawa F. Asian J. Org. Chem. 2018; 7: 1206
- 8e Gobalasingham NS, Thompson BC. Prog. Polym. Sci. 2018; 83: 135
- 8f Yang Y, Nishiura M, Wang H, Hou Z. Coord. Chem. Rev. 2018; 376: 506
- 8g Bura T, Blaskovits JT, Leclerc M. J. Am. Chem. Soc. 2016; 138: 10056
- 8h Pouliot J.-R, Grenier F, Blaskovits JT, Beaupré S, Leclerc M. Chem. Rev. 2016; 116: 14225
- 8i Okamoto K, Zhang J, Housekeeper JB, Marder SR, Luscombe CK. Macromolecules 2013; 46: 8059
- 8j Mercier LG.. Leclerc M. Acc. Chem. Res. 2013; 46: 1597
- 9a Iyoda M, Kuwatani Y, Ueno N, Oda M. J. Chem. Soc., Chem. Commun. 1992; 158
- 9b Iyoda M, Fukuda M, Yoshida M, Sasaki S. Chem. Lett. 1994; 2369
- 9c Kux U, Iyoda M. Chem. Lett. 1994; 2327
- 9d Iyoda M, Fukuda M, Sasaki S, Yoshida M. Synth. Met. 1995; 70: 1171
- 9e Nakatsuji S, Satoki S, Suzuki K, Enoki T, Kinoshita N, Anzai H. Synth. Met. 1995; 71: 1819
- 9f Skabara PJ, Müllen K, Bryce MR, Howard JA. K, Batsanov AS. J. Mater. Chem. 1998; 8: 1719
- 9g Nakazaki J, Matsushita MM, Izuoka A, Sugawara T. Tetrahedron Lett. 1999; 40: 5027
- 9h Iyoda M, Hasegawa M, Kuwatani Y, Nishikawa H, Fukami K, Nagase S, Yamamoto G. Chem. Lett. 2001; 1146
- 9i Moore AJ, Batsanov AS, Bryce MR, Howard JA. K, Khodorkovsky V, Shapiro L, Shames A. Eur. J. Org. Chem. 2001; 73
- 9j Bouguessa S, Gouasmia AK, Golhen S, Ouahab L, Fabre JM. Tetrahedron Lett. 2003; 44: 9275
- 9k Murata T, Morita Y, Fukui K, Sato K, Shiomi D, Takui T, Maesato M, Yamochi H, Saito G, Nakasuji K. Angew. Chem. Int. Ed. 2004; 43: 6343
- 9l Nishida S, Morita Y, Fukui K, Sato K, Shiomi D, Takui T, Nakasuji K. Angew. Chem. Int. Ed. 2005; 44: 7277
- 9m Wang L, Zhang B, Zhang J. Inorg. Chem. 2006; 45: 6860
- 9n Kanato H, Narutaki M, Takimiya K, Otsubo T, Harima Y. Chem. Lett. 2006; 35: 668
- 9o Chahma M, Wang X, van der Est A, Pilkington M. J. Org. Chem. 2006; 71: 2750
- 9p Lamère JF, Malfant I, Sornia-Saquet A, Lacroix PG, Fabre JM, Kaboub L, Abbaz T, Gouasmia AK, Asselberghs I, Clays K. Chem. Mater. 2007; 19: 805
- 9q Abbz T, Gouasmia A.-K, Fujiwara H, Hiraoka T, Sugimoto T, Taillefer M, Fabre J.-M. Synth. Met. 2007; 157: 508
- 9r Murata T, Morita Y, Yakiyama Y, Fukui K, Yamochi H, Saito G, Nakasuji K. J. Am. Chem. Soc. 2007; 129: 10837
- 9s Fujiwara H, Sugishima Y, Tsujimoto K. Tetrahedron Lett. 2008; 49: 7200
- 9t Wang Y, Cui S, Li B, Zhang J, Zhang Y. Cryst. Growth Des. 2009; 9: 3855
- 9u Carmieli R, Mi Q, Ricks AB, Giacobbe EM, Mickley SM, Wasielewski MR. J. Am. Chem. Soc. 2009; 131: 8372
- 9v Riobé F, Avarvari N, Grosshans P, Sidorenkova H, Berclaz T, Geoffroy M. Phys. Chem. Chem. Phys. 2010; 12: 9650
- 9w Bouguessa S, Gouasmia AK, Ouahab L, Golhen S, Fabre J.-M. Synth. Met. 2010; 160: 361
- 9x Lee SC, Ueda A, Kamo H, Takahashi K, Uruichi M, Yamamoto K, Yakushi K, Nakao A, Kumai R, Kobayashi K, Nakao H, Murakami Y, Mori H. Chem. Commun. 2012; 48: 8673
- 9y Pointillart F, Bourdolle A, Cauchy T, Maury O, Gal YL, Golhen S, Cador O, Ouahab L. Inorg. Chem. 2012; 51: 978
- 9z Hasegawa M, Daigoku K, Hashimoto K, Nishikawa H, Iyoda M. Bull. Chem. Soc. Jpn. 2012; 85: 51
- 9aa Poddutoori PK, Zarrabi N, Moiseev AG, Gumbau-abrisa R, Vassiliev S, van der Est A. Chem. Eur. J. 2013; 19: 3148
- 9ab Tsujimoto K, Ogasawara R, Fujiwara H. Tetrahedron Lett. 2013; 54: 1251
- 9ac Lee SC, Ueda A, Nakao A, Kumai R, Nakao H, Murakami Y, Mori H. Chem. Eur. J. 2014; 20: 1909
- 9ad Tsunashima R, Iwamoto Y, Baba Y, Kato C, Ichihashi K, Nishihara S, Inoue K, Ishiguro K, Song Y.-F, Akutagawa T. Angew. Chem. Int. Ed. 2014; 53: 11228
- 9ae Hayward JJ, Gumbau-Brisa R, Alberola A, Clarke CS, Rawson JM, Pilkington M. CrystEngComm 2014; 16: 7268
- 9af Kobayakawa K, Hasegawa M, Sasaki H, Endo J, Matsuzawa H, Sako K, Yoshida J, Mazaki Y. Chem. Asian J. 2014; 9: 2751
- 9ag Geng Y, Pop F, Yi C, Avarvari N, Grätzel M, Decurtins S, Liu S.-X. New. J. Chem. 2014; 38: 3269
- 9ah Ayadi A, Alamy AE, Alévêque O, Allain M, Zouari N, Bouachrine M, El-Ghayoury A. Beilstein J. Org. Chem. 2015; 11: 1379
- 9ai Nafe J, Auras F, Karaghiosoff K, Bein T, Knochel P. Org. Lett. 2015; 17: 5356
- 9aj Nafe J, Knochel P. Synthesis 2016; 48: 103
- 9ak Okino R, Yamaguchi M, Fujiwara H. Dalton Trans. 2017; 46: 4912
- 9al Kanetou T, Tsunashima R, Hoshino N, Akutagawa T. RSC Adv. 2017; 7: 6236
- 9am Kishi Y, Cornet L, Pointillart F, Riobé F, Lefeuvre B, Cador O, Guennic BL, Maury O, Fujiwara H, Ouahab L. Eur. J. Org. Chem. 2018; 458
- 9an Stetsiuk O, Petrusenko SR, El-Ghayoury A, Kokozay VN, Avarvari N. Inorg. Chim. Acta 2018; 475: 172
- 9ao Zarrabi N, Lim GN, Bayard BJ, D’Souza F, Poddutoori PK. Phys. Chem. Chem. Phys. 2019; 21: 19612
- 9ap Yoshimura A, Kimura H, Handa A, Hashimoto N, Yano M, Mori S, Shirahata T, Hayashi M, Misaki Y. Tetrahedron Lett. 2020; 61: 151724
- 10 Mitamura Y, Yorimitsu H, Oshima K, Osuka A. Chem. Sci. 2011; 2: 2017
- 11a Dyker G, Heiermann J, Miura M, Inoh J.-I, Pivsa-Art S, Satoh T, Nomura M. Chem. Eur. J. 2000; 6: 3426
- 11b Miura M, Pivsa-Art S, Dyker G, Heiermann J, Satoh T, Nomura M. Chem. Commun. 1998; 1889
- 12 Dolphin D, Pegg W, Wirz P. Can. J. Chem. 1974; 52: 4078
- 13a Lapointe D, Fagnou K. Chem. Lett. 2010; 39: 1118
- 13b Lafrance M, Fagnou K. J. Am. Chem. Soc. 2006; 128: 16496
- 13c García-Cuadrado D, Braga AA. C, Maseras F, Echavarren AM. J. Am. Chem. Soc. 2006; 128: 1066
- 13d García-Cuadrado D, de Mendoza P, Braga AA. C, Maseras F, Echavarren AM. J. Am. Chem. Soc. 2007; 129: 6880
- 14 Netherton MR, Fu GC. Org. Lett. 2001; 3: 4295
- 15a Lengthy synthesis: Charlton A, Underhill AE, Williams G, Kalaji M, Murphy PJ, Hibbs DE, Hursthouse MB, Malik KM. A. Chem. Commun. 1996; 2423
- 15b Condensation of diarylacetylene with carbon disulfide under 4500 atm: Nagawa T, Zama Y, Okamoto Y. Bull. Chem. Soc. Jpn. 1984; 57: 2035
- 16 Ueno R, Fujino D, Yorimitsu H, Osuka A. Chem. Eur. J. 2013; 19: 7156
- 17a Sun L, Campbell MG, Dincă M. Angew. Chem. Int. Ed. 2016; 55: 3566
- 17b Wang H.-Y, Cui L, Xie J.-Z, Leong CF, D’Alessandro DM, Zuo J.-L. Coord. Chem. Rev. 2017; 345: 342
- 17c Jana A, Bähring S, Ishida M, Goeb S, Canevet D, Sallé M, Jeppesen JO, Sessler JL. Chem. Soc. Rev. 2018; 47: 5614
- 17d Calbo J, Golomb MJ, Walsh A. J. Mater. Chem. A 2019; 7: 16571
- 18 Narayan TC, Miyakai T, Seki S, Dincă M. J. Am. Chem. Soc. 2012; 134: 12932
- 19a Park SS, Hontz ER, Sun L, Hendon CH, Walsh A, Van Voorhis T, Dincă M. J. Am. Chem. Soc. 2015; 137: 1774
- 19b Chen B, Lv Z.-P, Leong CF, Zhao Y, D’Alessandro DM, Zuo J.-L. Cryst. Growth. Des. 2015; 15: 1861
- 19c Sun L, Park SS, Sheberla D, Dincă M. J. Am. Chem. Soc. 2016; 138: 14772
- 19d Park SS, Hendon CH, Fielding AJ, Walsh A, O’Keeffe M, Dincă M. J. Am. Chem. Soc. 2017; 139: 3619
- 19e Su J, Yuan S, Wang H.-Y, Huang L, Ge J.-Y, Joseph E, Qin J, Cagin T, Zuo J.-L, Zhou H.-C. Nat. Commun. 2017; 8: 2008
- 19f Park SS, Rieth AJ, Hendon CH, Dincă M. J. Am. Chem. Soc. 2018; 140: 2016
- 19g Souto M, Romero J, Calbo J, Vitórica-Yrezábal IJ, Zafra JL, Casado J, Ortí E, Walsh A, Espallargas GM. J. Am. Chem. Soc. 2018; 140: 10562
- 19h Souto M, Santiago-Portillo A, Palomino M, Vitórica-Yrezábal IJ, Vieira BJ. C, Waerenborgh JC, Valencia S, Navalón S, Rey F, García H, Mínguez Espallargas G. Chem. Sci. 2018; 9: 2413
- 19i Leong CF, Wang C.-H, Ling CD, D’Alessandro DM. Polyhedron 2018; 154: 334
- 19j Su J, Hu T.-H, Murase R, Wang H.-Y, D’Alessandro DM, Kurmoo M, Zuo J.-L. Inorg. Chem. 2019; 58: 3698
- 19k Pattengale B, Neu J, Ostresh S, Hu G, Spies JA, Okabe R, Brudvig GW, Schmuttenmaer CA. J. Am. Chem. Soc. 2019; 141: 9793
- 19l Castells-Gil J, Mañas-Valero S, Vitórica-Yrezábal IJ, Ananias D, Rocha J, Santiago R, Bromley ST, Baldoví JJ, Coronado E, Souto M, Mínguez Espallargas G. Chem. Eur. J. 2019; 25: 12636
- 19m Cadiau A, Xie LS, Kolobov N, Shkurenko A, Qureshi M, Tchalala MR, Park SS, Bavykina A, Eddaoudi M, Dincă M, Henden CH, Gascon J. Chem. Mater. 2020; 32: 97
- 19n Wang F, Wang J, Maehrlein SF, Ma Y, Liu F, Zhu X.-Y. J. Phys. Chem. Lett. 2020; 11: 762
- 19o Su J, He W, Li X.-M, Sun L, Wang H.-Y, Lan Y.-Q, Ding M, Zuo J.-L. Matter 2020; 2: 711
- 20a Hisaki I, Affendy EN. Q, Tohnai N. CrystEngComm 2017; 19: 4892
- 20b Zheng X, Xiao N, Long Z, Wang L, Ye F, Fang J, Shen L, Xiao X. Synth. Met. 2020; 263: 116365
- 21 Lv Z.-P, Chen B, Wang H.-Y, Wu Y, Zuo J.-L. Small 2015; 11: 3597
- 22 Liu L, Zhou S, Zhao C, Jiu T, Bi F, Jian H, Zhao M, Zhang G, Wang L, Li F, Xiao X. J. Energy Chem. 2020; 42: 210
- 23 Vajpayee V, Bivaud S, Goeb S, Croué V, Allain M, Popp BV, Garci A, Therrien B, Sallé M. Organometallics 2014; 33: 1651 . In this paper, ruthenium complexes of tetra(3-pyridyl) 1m were also reported
- 24 Goeb S, Bivaud S, Croué V, Vajpayee V, Allain M, Sallé M. Materials 2014; 7: 611
- 25 Tzeng B.-C, Hsiao Y.-J, Lee G.-H, Wang H.-Y, Leong CF, D’Alessandro DM, Zuo J.-L. Dalton Trans. 2019; 48: 7946
- 26a Wang H.-Y, Wu Y, Leong CF, D’Alessandro DM, Zuo J.-L. Inorg. Chem. 2015; 54: 10766
- 26b Wang H.-Y, Ge J.-Y, Hua C, Jiao C.-Q, Wu Y, Leong CF, D’Alessandro DM, Liu T, Zuo J.-L. Angew. Chem. Int. Ed. 2017; 56: 5465
- 26c Wang H.-Y, Su J, Ma J.-P, Yu F, Leong CF, D’Alessandro DM, Kurmoo M, Zuo J.-L. Inorg. Chem. 2019; 58: 8657
- 26d Yu Q, Su J, Ma J.-P, Leong CF, D’Alessandro DM, Wang H.-Y, Kurmoo M, Zuo J.-L. Cryst. Growth Des. 2019; 19: 3012
- 27 Jin S, Sakurai T, Kowalczyk T, Dalapati S, Xu F, Wei H, Chen X, Gao J, Seki S, Irle S, Jiang D. Chem. Eur. J. 2014; 20: 14608
- 28 Ding H, Li Y, Hu H, Sun Y, Wang J, Wang C, Wang C, Zhang G, Wang B, Xu W, Zhang D. Chem. Eur. J. 2014; 20: 14614
- 29 Cai S.-L, Zhang Y.-B, Pun AB, He B, Yang J, Toma FM, Sharp ID, Yaghi OM, Fan J, Zheng S.-R, Zhang W.-G, Liu Y. Chem. Sci. 2014; 5: 4693
- 30a Dong W.-l, Wang L, Ding H.-m, Zhao L, Wang D, Wang C, Wan L.-J. Langmuir 2015; 31: 11755
- 30b Dong W.-L, Li S.-Y, Yue J.-Y, Wang C, Wang D, Wan L.-J. Phys. Chem. Chem. Phys. 2016; 18: 17356
- 31 Li H, Chang J, Li S, Guan X, Li D, Li C, Tang L, Xue M, Yan Y, Valtchev V, Qiu S, Fang Q. J. Am. Chem. Soc. 2019; 141: 13324
- 32a Lu M, Liu J, Li Q, Zhang M, Liu M, Wang J.-L, Yuan D.-Q, Lan Y.-Q. Angew. Chem. Int. Ed. 2019; 58: 12392
- 32b Zhu H.-J, Lu M, Wang Y.-R, Yao S.-J, Zhang M, Kan Y.-H, Liu J, Chen Y, Li S.-L, Lan Y.-Q. Nat. Commun. 2020; 11: 497
- 32c Wu Q, Xie R.-K, Mao M.-J, Chai G.-L, Yi J.-D, Zhao S.-S, Huang Y.-B, Cao R. ACS Energy Lett. 2020; 5: 1005
- 33 Cai S, Sun B, Li X, Yan Y, Navarro A, Garzón-Ruiz A, Mao H, Chatterjee R, Yano J, Zhu C, Reimer JA, Zheng S, Fan J, Zhang W, Liu Y. ACS Appl. Mater. Interfaces 2020; 12: 19054
- 34 Zhang Y.-C, Zhou Y, Li Z.-T, Zhang D.-W. Tetrahedron 2015; 71: 605
- 35a Akiba K.-y, Ishikawa K, Inamoto N. Bull. Chem. Soc. Jpn. 1978; 51: 2674
- 35b Bryce MR, Moore AJ. Synth. Met. 1988; 25: 203
- 35c Bryce MR, Moore AJ, Hasan M, Ashwell GJ, Fraser AT, Clegg W, Hursthouse MB, Karaulov AI. Angew. Chem. Int. Ed. 1990; 29: 1450
- 35d Bryce MR, Finn T, Moore AJ, Batsanov AS, Howard JA. K. Eur. J. Org. Chem. 2000; 51
- 35e Jones AE, Christensen CA, Perepichka DF, Batsanov AS, Beeby A, Low PJ, Bryce MR, Parker AW. Chem. Eur. J. 2001; 7: 973
- 35f Barthelmes K, Sittig M, Winter A, Schubert US. Eur. J. Inorg. Chem. 2017; 3698
- 35g Hachem H, Vacher A, Dorcet V, Lorcy D. Organometallics 2017; 36: 2208
- 36a Martín N, Sańchez L, Herranz MÁ, Illescas B, Guldi DM. Acc. Chem. Res. 2007; 40: 1015
- 36b Wenger S, Bouit P.-A, Chen Q, Teuscher J, Di Censo D, Humphry-Baker R, Moser J.-E, Delgado JL, Martín N, Zakeeruddin SM, Grätzel M. J. Am. Chem. Soc. 2010; 132: 5164
- 37a Ogi D, Fujita Y, Kato M, Yamauchi T, Shirahata T, Yao M, Misaki Y. Eur. J. Org. Chem. 2019; 2725
- 37b Yamauchi T, Kato M, Shirahata T, Yao M, Misaki Y. Chem. Lett. 2019; 48: 1507
- 38a Hardouin-Lerouge M, Chesneau B, Allain M, Hudhomme P. J. Org. Chem. 2012; 77: 2441
- 38b Isla H, Gallego M, Pérez EM, Viruela R, Ortí E, Martín N. J. Am. Chem. Soc. 2010; 132: 1772
- 39 Bivaud S, Goeb S, Croué V, Dron PI, Allain M, Sallé M. J. Am. Chem. Soc. 2013; 135: 10018
- 40a Bivaud S, Goeb S, Croué V, Allain M, Pop F, Sallé M. Beilstein J. Org. Chem. 2015; 11: 966
- 40b Croué V, Goeb S, Szalóki G, Allain M, Sallé M. Angew. Chem. Int. Ed. 2016; 55: 1746
- 40c Szalóki G, Croué V, Allain M, Goeb S, Sallé M. Chem. Commun. 2016; 52: 10012
- 40d Szalóki G, Croué V, Carré V, Aubriet F, Alévêque O, Levillain E, Allain M, Aragó J, Ortí E, Goeb S, Sallé M. Angew. Chem. Int. Ed. 2017; 56: 16272
- 40e Colomban C, Szalóki G, Allain M, Gómez L, Goeb S, Sallé M, Costas M, Ribas X. Chem. Eur. J. 2017; 23: 3016
- 40f Szalóki G, Krykun S, Croué V, Allain M, Morille Y, Aubriet F, Carré V, Voitenko Z, Goeb S, Sallé M. Chem. Eur. J. 2018; 24: 11273
- 41 Yoshimura A, Henmi K, Kimura H, Sakakibara R, Ochi R, Shirahata T, Yorimitsu H, Misaki Y. Synthesis 2020; 52
- 42 Gordillo MA, Benavides PA, Panda DK, Saha S. ACS Appl. Mater. Interfaces 2020; 12: 12955
- 43 Yoshimura A, Kimura H, Kagawa K, Yoshioka M, Itou T, Vasu D, Shirahata T, Yorimitsu H, Misaki Y. Beilstein J. Org. Chem. 2020; 16: 974
- 44 Gholami M, Tykwinski RR. Chem. Rev. 2006; 106: 4997
- 45a Sugimoto T, Awaji H, Misaki Y, Yoshida Z, Kai Y, Nakagawa H, Kasai N. J. Am. Chem. Soc. 1985; 107: 5792
- 45b Sugimoto T, Misaki Y, Arai Y, Yamamoto Y, Yoshida Z, Kai Y, Kasai N. J. Am. Chem. Soc. 1988; 110: 628
- 45c Misaki Y, Matsumura Y, Sugimoto T, Yoshida Z.-i. Tetrahedron Lett. 1989; 30: 5289
- 45d Amaresh RR, Liu D, Konovalova T, Lakshmikantham MV, Cava MP, Kispert LD. J. Org. Chem. 2001; 66: 7757
- 45e Rajagopal D, Lakshmikantham MV, Cava MP. Org. Lett. 2002; 4: 2581
- 45f Coffin MA, Bryce MR, Batsanov AS, Howard JA. K. J. Chem. Soc., Chem. Commun. 1993; 552
- 45g Bryce MR, Coffin MA, Skabara PJ, Moore AJ, Batsanov AS, Howard JA. K. Chem. Eur. J. 2000; 6: 1955
- 45h Hasegawa M, Fujioka A, Kubo T, Honda T, Miyamoto H, Misaki Y. Chem. Lett. 2008; 37: 474
- 45i Horiuchi H, Misaki Y. Chem. Lett. 2010; 39: 989
- 45j Nishiwaki M, Tezuka M, Shirahata T, Misaki Y. Chem. Lett. 2011; 40: 467
- 45k Yamauchi T, Shibata Y, Aki T, Yoshimura A, Yao M, Misaki Y. Chem. Lett. 2018; 47: 1176
- 46 Shoji T, Araki T, Sugiyama S, Ohta A, Sekiguchi R, Ito S, Okujima T, Toyota K. J. Org. Chem. 2017; 82: 1657
- 47a Nelson JN, Krzyaniak MD, Horwitz NE, Rugg BK, Phelan BT, Wasielewski MR. J. Phys. Chem. A 2017; 121: 2241
- 47b Nelson JN, Zhang J, Zhou J, Rugg BK, Krzyaniak MD, Wasielewski MR. J. Phys. Chem. A 2018; 122: 9392
- 48 Hasegawa M, Endo J, Iwata S, Shimasaki T, Mazaki Y. Beilstein J. Org. Chem. 2015; 11: 972
For selected books, see:
For selected reviews, see:
For reviews on C–H functionalization reactions for the synthesis of discrete π-conjugated materials, see:
For reviews on C–H arylation reactions for the synthesis of polymers, see:
For selected examples, see:
For other uses, see: