Synthesis 2021; 53(03): 557-568
DOI: 10.1055/s-0040-1707259
paper

Halogen–Lithium Exchange of Sensitive (Hetero)aromatic Halides under Barbier Conditions in a Continuous Flow Set-Up

Niels Weidmann
a   Ludwig-Maximilians-Universität München, Department Chemie, Butenandtstraße 5–13, 81377 München, Germany   Email: Paul.knochel@cup.uni-muenchen.de
,
Rodolfo H. V. Nishimura
b   Colegiado de Ciências Farmacêuticas, Universidade Federal do Vale do São Francisco, Avenue José de Sá Maniçoba, Petrolina, 56304-205 Petrolina, Brazil
,
Johannes H. Harenberg
a   Ludwig-Maximilians-Universität München, Department Chemie, Butenandtstraße 5–13, 81377 München, Germany   Email: Paul.knochel@cup.uni-muenchen.de
,
Paul Knochel
a   Ludwig-Maximilians-Universität München, Department Chemie, Butenandtstraße 5–13, 81377 München, Germany   Email: Paul.knochel@cup.uni-muenchen.de
› Author Affiliations
R. H. V. Nishimura thanks FAPESP (2018/08856-5) for financial support. N. Weidmann thanks the German Academic Scholarship Foundation for a fellowship. We thank the Deutsche Forschungsgemeinschaft and Ludwig-Maximilians-Universität München for financial support.


In memory of Prof. Dr. Kilian Muñiz

Abstract

A halogen–lithium exchange reaction of (hetero)aromatic halides performed in the presence of various electrophiles such as aldehydes, ketones, Weinreb amides, and imines using BuLi as exchange reagent and a commercially available flow set-up is reported. The organolithiums generated in situ were instantaneously trapped with various electrophiles (Barbier conditions) resulting in the formation of polyfunctional (hetero)arenes. This method enables the functionalization of (hetero)arenes containing highly sensitive functional groups such as esters­, which are not tolerated in batch conditions.

Supporting Information



Publication History

Received: 21 July 2020

Accepted after revision: 29 July 2020

Article published online:
02 September 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Astruc D. Modern Arene Chemistry . Wiley-VCH; Weinheim: 2002
    • 1b Penning TD, Talley JJ, Bertenshaw SR, Carter JS, Collins PW, Docter S, Graneto MJ, Lee LF, Malecha JW, Miyashiro JM, Rogers RS, Rogier DJ, Yu SS, Anderson GD, Burton EG, Cogburn JN, Gregory SA, Koboldt CM, Perkins WE, Seibert K, Veenhuizen AW, Zhang YY, Isakson PC. J. Med. Chem 1997; 40: 1347
    • 1c Bhat GA, Montero JL-G, Panzica RP, Wotring LL, Townsend LB. J. Med. Chem. 1981; 24: 1165
    • 1d Vicentini CB, Mares D, Tartari A, Manfrini M, Forlani G. J. Agric. Food Chem. 2004; 52: 1898
    • 3a Parham WE, Jones LD. J. Org. Chem. 1976; 41: 1187
    • 3b Parham WE, Jones LD, Sayed Y. J. Org. Chem. 1975; 40: 239
    • 3c Parham WE, Piccirilli RM. J. Org. Chem. 1977; 42: 257
    • 3d Becker MR, Knochel P. Angew. Chem. Int. Ed. 2015; 54: 12501
    • 3e Morija K, Schwärzer K, Karaghiosoff K, Knochel P. Synthesis 2016; 48: 3141
    • 3f Bellan AB, Knochel P. Synthesis 2019; 51: 3536
    • 3g Skotnitzki J, Kremsmair A, Knochel P. Synthesis 2020; 52: 189
    • 3h Skotnitzki J, Kremsmair A, Kicin B, Saeb R, Ruf V, Knochel P. Synthesis 2020; 52: 873
    • 4a Hatano M, Suzuki S, Ishihara K. Synlett 2010; 321
    • 4b Kim T, Kim K. J. Heterocycl. Chem. 2010; 47: 98
    • 4c Kobayashi K, Yokoi Y, Nakahara T, Matsumoto N. Tetrahedron 2013; 69: 10304
    • 4d Matsuzawa A, Takeuchi S, Sugita K. Chem. Asian J. 2016; 11: 2863
    • 5a Boudier A, Bromm LO, Lotz M, Knochel P. Angew. Chem. Int. Ed. 2000; 39: 4414
    • 5b Ketels M, Ganiek MA, Weidmann N, Knochel P. Angew. Chem. Int. Ed. 2017; 56: 12770
    • 5c Tucker CE, Majid TN, Knochel P. J. Am. Chem. Soc. 1992; 114: 1992
    • 5d Heinz B, Balkenhohl M, Knochel P. Synthesis 2019; 51: 4452
    • 6a Nagaki A, Sasatsuki K, Ishiuchi S, Miuchi N, Takumi M, Yoshida J.-I. Chem. Eur. J. 2019; 25: 4946
    • 6b Lee H.-j, Kim H, Yoshida J.-I, Kim D.-P. Chem. Commun. 2018; 54: 547
    • 6c Kim H, Yonekura Y, Yoshida J.-I. Angew. Chem. Int. Ed. 2018; 57: 4063
    • 6d Kim H, Min K.-I, Inoue K, Im DJ, Kim D.-P, Yoshida J.-I. Science 2016; 352: 6286
    • 6e Nagaki A, Tsuchihashi Y, Haraki S, Yoshida J.-I. Org. Biomol. Chem. 2015; 13: 7140
  • 7 Reich HJ. Chem. Rev. 2013; 113: 7130
    • 8a Plutschack MB, Piber B, Gilmore K, Seeberger PH. Chem. Rev. 2017; 117: 11796
    • 8b Movsisyan M, Delbeke EI. P, Berton JK. E. T, Battilocchio C, Ley SV, Stevens CV. Chem. Soc. Rev. 2016; 45: 4892
    • 8c Roesner S, Buchwald SL. Angew. Chem. Int. Ed. 2016; 55: 10463
    • 9a Blomberg C. The Barbier Reaction and Related One-Step Processes. Springer; Berlin: 1993
    • 9b Weidmann N, Harenberg JH, Knochel P. Org. Lett. 2020; in press; DOI: 10.1021/acs.orglett.0c01991
    • 10a Yamataka H. In Patai´s Chemistry of functional groups: Addition of organolithium reagents to double bonds. Wiley; New York: 2009: 1-35
    • 10b Yamataka H, Miyano N, Hanafusa T. J. Org. Chem. 1991; 56: 2573
    • 11a Campbell R, Dedinas F, Trumbower-Walsh S. Synlett 2010; 3008
    • 11b Chakravarthy AS. J, Krishnamurthy MS, Begum NS, Prasad SH. Tetrahedron Lett. 2016; 57: 3231
    • 11c Hudrlik PF, Arasho WD, Hudrlik AM. J. Org. Chem. 2007; 72: 8107
  • 12 Oda S, Yamamoto H. Angew. Chem. Int. Ed. 2013; 52: 8165
  • 13 Gaykar RN, Bhunia A, Biju AT. J. Org. Chem. 2018; 83: 11333
  • 14 Ishida S, Suzuki H, Uchida S, Yamaguchi E, Itoh A. Eur. J. Org. Chem. 2019; 7483
  • 15 Šolić I, Seankongsuk P, Loh JK, Vilaivan T, Bates RW. Org. Biomol. Chem. 2018; 16: 119
  • 16 Zhao H, Cheng M, Zhang T, Cai M. J. Organomet. Chem. 2015; 777: 50
  • 17 Mothe SR, Kothandaraman P, Rao W, Chan PW. H. J. Org. Chem. 2011; 76: 2521
  • 18 Shinozuka T, Shimada K, Matsui S, Yamane T, Ama M, Fukuda T, Taki M, Takeda Y, Otsuka E, Yamato M, Mochizuki S.-I, Ohhata K, Naito S. Bioorg. Med. Chem. 2006; 14: 6789
  • 19 Wen Y, Chen G, Huang S, Tang Y, Yang J, Zhang Y. Adv. Synth. Catal. 2016; 358: 947
  • 20 Tan BY.-H, Teo Y.-C. Org. Biomol. Chem. 2014; 12: 7478
  • 21 Matsuda A, Ushimaru T, Kobayashi Y, Harada T. Chem. Eur. J. 2017; 23: 8605
  • 22 Sackville EV, Kociok-Köhn G, Hintermair U. Organometallics 2017; 36: 3578
  • 23 Benischke AD, Anthore-Dalion L, Kohl F, Knochel P. Chem. Eur. J. 2018; 24: 11103
  • 24 You S, Yan C, Zhang R, Cai M. Appl. Organomet. Chem. 2019; 33: e4650
  • 25 Lamaa D, Lin H.-P, Bzeih T, Retailleau P, Alami M, Hamze A. Eur. J. Org. Chem. 2019; 2602
  • 26 Tataridis D, Kolocouris A, Fytas G, Kolocouris N, Foscolos GB, Konstantinos P, Tzartos SJ. Farmaco 2002; 57: 979
  • 27 Karthikeyan I, Arunprasath D, Sekar G. Chem. Commun. 2015; 51: 1701