Synlett, Inhaltsverzeichnis Synlett 2020; 31(18): 1789-1794DOI: 10.1055/s-0040-1707264 letter Epoxidation of Alkenes with Molecular Oxygen as the Oxidant in the Presence of Nano-Al2O3 Xuan Zhou , Qiong Wang , Wenfang Xiong , Lu Wang , Rongkai Ye , Ge Xiang , Chaorong Qi∗ , Jianqiang Hu∗ School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 51064, P. R. of China › Institutsangaben Artikel empfehlen Abstract Artikel einzeln kaufen Alle Artikel dieser Rubrik Abstract The nano-Al2O3-promoted epoxidation of alkenes with molecular oxygen as the oxidant has been developed, providing an efficient route to a variety of epoxides in moderate to excellent yields. The environmentally friendly and efficient nano-Al2O3 catalyst could be easily recovered and reused five times without significant loss of activity. Key words Key wordsalkenes - nano-alumina - epoxidation - epoxides - molecular oxygen Volltext Referenzen References and Notes 1a Mulzer M, Coates GW. J. Org. Chem. 2014; 79: 11851 1b Bedore MW, Zaborenko N, Jensen KF, Jamison TF. Org. Process Res. Dev. 2010; 14: 432 1c Shaikh RR, Pornpraprom S, D’Elia V. ACS Catal. 2018; 8: 419 1d He J, Ling J, Chiu P. Chem. Rev. 2014; 114: 8037 2a Liu Y, Deng K, Wang S, Xiao M, Han D, Meng Y. Polym. Chem. 2015; 6: 2076 2b Longo JM, Sanford MJ, Coates GW. Chem. Rev. 2016; 116: 15167 2c Herzberger J, Niederer K, Pohlit H, Seiwert J, Worm M, Wurm FR, Frey H. Chem. Rev. 2016; 116: 2170 3a Mukerjee S, Stassinopoulos A, Caradonna JP. J. Am. Chem. Soc. 1997; 119: 8097 3b Murakami Y, Konishi K. J. Am. Chem. Soc. 2007; 129: 14401 3c Wang B, Lee YM, Seo MS, Nam W. Angew. Chem. Int. Ed. 2015; 54: 11740 4 Bahramian B, Mirkhani V, Moghadam M, Tangestaninejad S. Catal. Commun. 2006; 7: 289 5 Jensen AJ, Luthman K. Tetrahedron Lett. 1998; 39: 3213 6a Shokouhimehr M, Piao Y, Kim J, Jang Y, Hyeon T. Angew. Chem. Int. Ed. 2007; 46: 7039 6b Banerjee D, Jagadeesh RV, Junge K, Pohl M.-M, Radnik J, Brückner A, Beller M. Angew. Chem. Int. Ed. 2014; 53: 4359 7a Lane BS, Burgess K. Chem. Rev. 2003; 103: 2457 7b Cussó O, Ribas X, Lloret-Fillol J, Costas M. Angew. Chem. Int. Ed. 2015; 54: 2729 7c Dias LD, Carrilho RM. B, Henriques CA, Calvete MJ. F, Masdeu-Bultj AM, Claver C, Rossi LM, Pereira MM. ChemCatChem 2018; 10: 2792 7d Kamata K, Yonehara K, Sumida Y, Hirata K, Nojima S, Mizuno N. Angew. Chem. Int. Ed. 2011; 50: 12062 8a Allen SE, Walvoord RR, Padilla-Salinas R, Kozlowski MC. Chem. Rev. 2013; 113: 6234 8b Weinstock IA, Schreiber RE, Neumann R. Chem. Rev. 2018; 118: 2680 9a Mukaiyama T, Yamada T. Bull. Chem. Soc. Jpn. 1995; 68: 17 9b Wentzel BB, Alsters PL, Feiters MC, Nolte RJ. M. J. Org. Chem. 2004; 69: 3453 10a Yang G, Du H, Liu J, Zhou Z, Hu X, Zhang Z. Green Chem. 2017; 19: 675 10b Qi Y, Luan Y, Yu J, Peng X, Wang G. Chem. Eur. J. 2015; 21: 1589 10c Li Z, Wu S, Ding H, Zheng D, Hu J, Wang X, Huo Q, Guan J, Kan Q. New J. Chem. 2013; 37: 1561 11a Maksimchuk NV, Melgunov MS, Chesalov YA, Białoń JM, Jarzębski AB, Kholdeeva OA. J. Catal. 2007; 246: 241 11b Reddy MM, Punniyamurthy T, lqbal J. Tetrahedron Lett. 1995; 36: 159 11c Nam W, Kim HJ, Kim SH, Ho RY. N, Valentine JS. Inorg. Chem. 1996; 35: 1045 12 He X, Chen L, Zhou X, Ji H. Catal. Commun. 2016; 83: 78 13 Mekrattanachai P, Liu J, Li Z, Cao C, Song W. Chem. Commun. 2018; 54: 1433 14a Hadian-Dehkordi LH, Hosseini-Monfared H, Aleshkevych P. Inorg. Chim. Acta 2017; 462: 142 14b Brown JW, Nguyen QT, Otto T, Jarenwattananon NN, Glöggler S, Bouchard L.-S. Catal. Commun. 2015; 59: 50 15a Zhang X, Wang G, Yang M, Luan Y, Dong W, Dang R, Gao H, Yu J. Catal. Sci. Technol. 2014; 4: 3082 15b Weerakkody C, Biswas S, Song W, He J, Wasalathanthri N, Dissanayake S, Kriz DA, Dutta B, Suib SL. Appl. Catal., B 2018; 221: 681 15c Hadian-Dehkordi LH, Hosseini-Monfared H. Green Chem. 2016; 18: 497 15d Phon-in P, Seubsai A, Chukeaw T, Charoen K, Donphai W, Prapainainar P, Chareonpanich M, Noon D, Zohour B, Senkan S. Catal. Commun. 2016; 86: 143 15e Kamata K, Yonehara K, Sumida Y, Hirata K, Nojima S, Mizuno N. Angew. Chem. Int. Ed. 2011; 50: 12062 16a Feng X, Ruan F, Hong R, Ye J, Hu J, Hu G, Yang Z. Langmuir 2011; 27: 2204 16b Ye R, Zhang Y, Chen Y, Tang L, Wang Q, Wang Q, Li B, Zhou X, Liu J, Hu J. Langmuir 2018; 34: 5719 17 Typical Procedure for the Synthesis of Epoxide 2a To a 25 mL dried Schlenk tube was added the mixture of nano-Al2O3 (10.2 mg), alkene 1a (1.0 mmol), 3,5,5-trimethylhexanal (3.0 mmol) in dry MeCN (5 mL) successively. The resulting mixture was stirred at 60 °C for 24 h under 1 atm of O2. After the reaction was completed, the reaction mixture was cooled to room temperature, diluted with EtOAc (25 mL), and filtered. After removing the solvent under vacuum, the crude product was separated by column chromatography on silica gel using PE–EtOAc as eluent to give the product 2a as a pale-yellow oil; yield 84%. IR (KBr): 3060, 2933, 1450, 966, 859, 749, 543 cm–1. MS (EI): m/z = 174 [M+]. 1H NMR (500 MHz, CDCl3): δ = 7.27–7.11 (m, 5 H), 2.95 (d, J = 3.5 Hz, 1 H), 2.19–2.13 (m, 1 H), 2.02–1.97 (m, 1 H), 1.92–1.81 (m, 2 H), 1.53–1.41 (m, 2 H), 1.38–1.31 (m, 1 H), 1.24–1.15 (m, 1 H). 13C NMR (126 MHz, CDCl3): δ = 142.6, 128.3, 127.2, 125.3, 61.9, 60.2, 28.9, 24.8, 20.2, 19.8. 18 CCDC 2019579 contains the supplementary crystallographic data for compound 2r. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures. 19 Tsuchiya F, Ikawa T. Can. J. Chem. 1969; 47: 3191 Zusatzmaterial Zusatzmaterial Supporting Information