Synthesis 2021; 53(02): 238-254
DOI: 10.1055/s-0040-1707268
short review

Recent Advances in Palladium-Catalyzed Bridging C–H Activation by Using Alkenes, Alkynes or Diazo Compounds as Bridging Reagents

Fulin Zhang
a   Key Laboratory for Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. of China   eMail: shliao@fzu.edu.cn
,
Luoting Xin
b   Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, ­Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. of China   eMail: huangxl@fjirsm.ac.cn
,
Yinghua Yu
b   Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, ­Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. of China   eMail: huangxl@fjirsm.ac.cn
,
Saihu Liao
a   Key Laboratory for Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. of China   eMail: shliao@fzu.edu.cn
,
b   Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, ­Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. of China   eMail: huangxl@fjirsm.ac.cn
› Institutsangaben
We are grateful for financial support from the National Natural Science Foundation of China (NSFC) (Grant Nos. 21402197, 21871259, and 21901244), the Hundred Talents Program, and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB20000000).


Dedicated to the 60th anniversary of the Fujian Institute of Research on the Structure of Matter

Abstract

Transition-metal-catalyzed direct inert C–H bond functionalization has attracted much attention over the past decades. However, because of the high strain energy of the suspected palladacycle generated via C–H bond palladation, direct functionalization of a C–H bond less than a three-bond distance from a catalyst center is highly challenging. In this short review, we summarize the advances on palladium-catalyzed bridging C–H activation, in which an inert proximal C–H bond palladation is promoted by the elementary step of migratory insertion of an alkene, an alkyne or a metal carbene intermediate.

1 Introduction

2 Palladium-Catalyzed Alkene Bridging C–H Activation

2.1 Intramolecular Reactions

2.2 Intermolecular Reactions

3 Palladium-Catalyzed Alkyne Bridging C–H Activation

3.1 Intermolecular Reactions

3.2 Intramolecular Reactions

4 Palladium-Catalyzed Carbene Bridging C–H Activation

5 Conclusion and Outlook



Publikationsverlauf

Eingereicht: 05. Juni 2020

Angenommen nach Revision: 04. August 2020

Artikel online veröffentlicht:
22. September 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany