Subscribe to RSS
DOI: 10.1055/s-0040-1707273
Recent Progress in Radical Decarboxylative Functionalizations Enabled by Transition-Metal (Ni, Cu, Fe, Co or Cr) Catalysis
This work was supported by the Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Tsinghua-Peking Centre for Life Science.
Abstract
Aliphatic carboxylic acids are abundant in natural and synthetic sources and are widely used as connection points in many chemical transformations. Radical decarboxylative functionalization promoted by transition-metal catalysis has achieved great success, enabling carboxylic acids to be easily transformed into a wide variety of products. Herein, we highlight the recent advances made on transition-metal (Ni, Cu, Fe, Co or Cr) catalyzed C–X (X = C, N, H, O, B, or Si) bond formation as well as syntheses of ketones, amino acids, alcohols, ethers and difluoromethyl derivatives via radical decarboxylation of carboxylic acids or their derivatives, including, among others, redox-active esters (RAEs), anhydrides, and diacyl peroxides.
1 Introduction
2 Ni-Catalyzed Decarboxylative Functionalizations
3 Cu-Catalyzed Decarboxylative Functionalizations
4 Fe-Catalyzed Decarboxylative Functionalizations
5 Co- and Cr-Catalyzed Decarboxylative Functionalizations
6 Conclusions
Key words
carboxylic acids - decarboxylative functionalization - transition metals - radicals - redox-active esters (RAEs) - C–X bond formation - catalysisPublication History
Received: 24 June 2020
Accepted after revision: 04 August 2020
Article published online:
01 October 2020
© 2020. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Morrison RT, Boyd RN. Organic Chemistry, 6th ed. Prentice Hall; New York: 1992
- 2a Smith MB, March J. March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 7th ed. John Wiley and Sons; Hoboken: 2013
- 2b Larock RC. Comprehensive Organic Transformations . John Wiley and Sons; Hoboken: 2018
- 3a Zuo Z, Ahneman DT, Chu L, Terrett JA, Doyle AG, MacMillan DW. C. Science 2014; 345: 437
- 3b Twilton J, Le CC, Zhang P, Shaw MH, Evans RW, MacMillan DW. C. Nat. Rev. Chem. 2017; 1: 0052 ; DOI: 0.1038/s41570-017-0052
- 4 Cornella J, Edwards JT, Qin T, Kawamura S, Wang J, Pan CM, Gianatassio R, Schmidt M, Eastgate MD, Baran PS. J. Am. Chem. Soc. 2016; 138: 2174
- 5 Huihui KM. M, Caputo JA, Melchor Z, Olivares AM, Spiewak AM, Johnson KA, DiBenedetto TA, Kim S, Ackerman LK. G, Weix DJ. J. Am. Chem. Soc. 2016; 138: 5016
- 6 Wang J, Qin T, Chen TG, Wimmer L, Edwards JT, Cornella J, Vokits B, Shaw SA, Baran PS. Angew. Chem. Int. Ed. 2016; 55: 9676
- 7a Schneider N, Lowe DM, Sayle RA, Tarselli MA, Landrum GA. J. Med. Chem. 2016; 59: 4385
- 7b Brown DG, Bostrçm J. J. Med. Chem. 2016; 59: 4443
- 8 Sandfort F, O’Neill MJ, Cornella J, Wimmer L, Baran PS. Angew. Chem. Int. Ed. 2017; 56: 3319
- 9 Chen T.-G, Zhang H, Mykhailiuk PK, Merchant RR, Smith CA, Qin T, Baran PS. Angew. Chem. Int. Ed. 2019; 58: 2454
- 10 Edwards JT, Merchant TR, McClymont KS, Knouse KW, Qin T, Malins LR, Vokits B, Shaw SA, Bao D.-H, Wei F.-L, Zhou T, Eastgate MD, Baran PS. Nature 2017; 545: 213
- 11 Merchant RR, Oberg KM, Lin Y, Novak AJ. E, Felding J, Baran PS. J. Am. Chem. Soc. 2018; 140: 7462
- 12 Suzuki N, Hofstra JL, Poremba KE, Reisman SE. Org. Lett. 2017; 19: 2150
- 13 Flood DT, Asai S, Zhang X, Wang J, Yoon L, Adams ZC, Dillingham BC, Sanchez BB, Vantourout JC, Flanagan ME, Piotrowski DW, Richardson P, Green SA, Shenvi RA, Chen JS, Baran PS, Dawson PE. J. Am. Chem. Soc. 2019; 141: 9998
- 14 Chen H, Hu L, Ji W, Yao LC, Liao X. ACS Catal. 2018; 8: 10479
- 15 Chen H, Liao X. Tetrahedron 2019; 75: 4186
- 16 Chen H, Sun S, Liao X. Org. Lett. 2019; 21: 3625
- 17 Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 13230
- 18 Li H, Breen CP, Seo H, Jamison TF, Fang Y.-Q, Bio MM. Org. Lett. 2018; 20: 1338
- 19 Koyanagi T, Herath A, Chong A, Ratnikov M, Valiere A, Chang J, Molteni V, Loren J. Org. Lett. 2019; 21: 816
- 20 Qin T, Cornella J, Li C, Malins LR, Edwards JT, Kawamura S, Maxwell BD, Eastgate MD, Baran PS. Science 2016; 325: 801
- 21 Qin T, Malins LR, Edwards JT, Merchant RR, Novak AJ. E, Zhong JZ, Mills RB, Yan M, Yuan C, Eastgate MD, Baran PS. Angew. Chem. Int. Ed. 2017; 56: 260
- 22 Peters DS, Romesberg FE, Baran PS. J. Am. Chem. Soc. 2018; 140: 2072
- 23 Lu X, Xiao B, Liu L, Fu Y. Chem. Eur. J. 2016; 22: 11161
- 24 Lu X, Wang X.-X, Gong T.-J, Pi J.-J, He S.-J, Fu Y. Chem. Sci. 2019; 10: 809
- 25 Echavarren J, Gall MA. Y, Haertsch A, Leigh DA, Marcos V, Tetlow DJ. Chem. Sci. 2019; 10: 7269
- 26 Ni S, Garrido-Castro AF, Merchant RR, Gruyter JN, Schmitt DC, Mousseau JJ, Gallego GM, Yang S, Collins MR, Qiao JX, Yeung K.-S, Langley DR, Poss MA, Scola PM, Qin T, Baran PS. Angew. Chem. Int. Ed. 2018; 57: 14560
- 27 Ni S, Padial NM, Kingston C, Vantourout JC, Schmitt DC, Edwards JT, Kruszyk MM, Merchant RR, Mykhailiuk PK, Sanchez BB, Yang S, Perry MA, Gallego GM, Mousseau JJ, Collins MR, Cherney RJ, Lebed PS, Chen JS, Qin T, Baran PS. J. Am. Chem. Soc. 2019; 141: 6726
- 28 Smith JM, Qin T, Merchant RR, Edwards JT, Malins LR, Liu Z, Che G, Shen Z, Shaw SA, Eastgate MA, Baran PS. Angew. Chem. Int. Ed. 2017; 56: 11906
- 29 Huang LB, Olivares AM, Weix DJ. Angew. Chem. Int. Ed. 2017; 56: 11901
- 30 Li C, Wang J, Barton LM, Yu S, Tian M, Peters DS, Kumar M, Yu AW, Johnson KA, Chatterjee AK, Yan M, Baran PS. Science 2017; 356: eaam7355 ; DOI: 10.1126/science.aam7355
- 31 Hossain A, Bhattacharyya A, Reiser O. Science 2019; 364: eaav9713 ; DOI: 10.1126/science.aav9713
- 32 Lyu X.-L, Huang S.-S, Song H.-J, Liu Y.-X, Wang Q.-M. Org. Lett. 2019; 21: 5728
- 33 Zhang J, Li Z, Zhuo J, Cui Y, Han T, Li C. J. Am. Chem. Soc. 2019; 141: 8372
- 34 Wang C, Guo M, Qi R, Shang Q, Liu Q, Wang S, Zhao L, Wang R, Xu Z. Angew. Chem. Int. Ed. 2018; 57: 15841
- 35 Zeng X, Yan W, Zacate SB, Chao T.-H, Sun X, Cao Z, Bradford KG. E, Paeth M, Tyndall SB, Yang K, Kuo T.-C, Cheng M.-J, Liu W. J. Am. Chem. Soc. 2019; 141: 11398
- 36 Ye C, Li Y, Bao H. Adv. Synth. Catal. 2017; 359: 3720
- 37 Mao Y, Zhao W, Lu S, Yu L, Wang Y, Liang Y, Ni S, Pan Y. Chem. Sci. 2020; 11: 4939
- 38 Wang J, Shang M, Lundberg H, Feu KS, Hecker SJ, Qin T, Blackmond DG, Baran PS. ACS Catal. 2018; 8: 9537
- 39 Agasti S, Pal T, Achar TK, Maiti S, Pal D, Mandal S, Daud K, Lahiri GK, Maiti D. Angew. Chem. Int. Ed. 2019; 58: 11039
- 40 Zhao W, Wurz RP, Peters JC, Fu GC. J. Am. Chem. Soc. 2017; 139: 12153
- 41 Zhu H, Teng F, Pan CD, Cheng J, Yu J.-T. Tetrahedron Lett. 2016; 57: 2372
- 42 Li Y, Han Y, Xiong H, Zhu N, Qian B, Ye C, Kantchev EA. B, Bao H. Org. Lett. 2016; 18: 392
- 43 Xue WC, Oestreich M. Angew. Chem. Int. Ed. 2017; 56: 11649
- 44 Toriyama F, Cornella J, Wimmer L, Chen TG, Dixon DD, Creech G, Baran PS. J. Am. Chem. Soc. 2016; 138: 11132
- 45 Li Z, Wang X, Xia S, Jin J. Org. Lett. 2019; 21: 4259
- 46 Babu KR, Zhu N, Bao H. Org. Lett. 2017; 19: 46
- 47 Zhao J.-F, Duan X.-H, Gu Y.-R, Gao P, Guo L.-N. Org. Lett. 2018; 20: 4614
- 48 Feng G, Wang X, Jin J. Eur. J. Org. Chem. 2019; 6728
- 49 Jian WJ, Ge L, Jiao YH, Qian B, Bao H. Angew. Chem. Int. Ed. 2017; 56: 3650
- 50 Zhu XT, Ye CQ, Li YJ, Bao HL. Chem. Eur. J. 2017; 23: 10254
- 51 Liu X.-G, Zhou C. J, Lin E, Han X.-L, Zhang S.-S, Li Q, Wang H. Angew. Chem. Int. Ed. 2018; 57: 13096
-
52 Nickel, $6.76/lb; Cobalt, $15.42/lb. see: https://www.mining.com/markets/, access on September 18, 2020.
- 53 Wang Z.-Z, Wang G.-Z, Zhao B, Shang R, Fu Y. Synlett 2020; 31: 1221
- 54 Schwarz J, Konig B. Green Chem. 2018; 20: 323