RSS-Feed abonnieren
DOI: 10.1055/s-0040-1707286
Phosphorylation of Carboxylic Acids and Their Derivatives with P(O)–H Compounds Forming P(O)–C Bonds
The work was financially supported by the Natural Science Foundation of Hainan Province (No. 219MS005) and the National Natural Science Foundation of China (No. 21871070).
Abstract
Herein, we highlight advances in the phosphorylation of readily available carboxylic acids and their derivatives forming synthetically important P(O)–sp3C, P(O)–sp2C, and P(O)–spC bonds, with an emphasis on the results demonstrated since 2010. This review examines the challenges associated with the use of this strategy for the synthesis of organophosphorus compounds and details advances in the design of catalytic systems that suppress these problems thus resulting in notable progress. Mechanistic details are discussed where available.
1 Introduction
2 Formation of P(O)–sp3C Bonds
3 Formation of P(O)–sp2C Bonds
4 Formation of P(O)–spC Bonds
5 Outlook and Conclusion
Publikationsverlauf
Eingereicht: 13. Juli 2020
Angenommen nach Revision: 22. August 2020
Artikel online veröffentlicht:
30. September 2020
© 2020. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Corbridge DE. C. Phosphorus: Chemistry, Biochemistry and Technology, 6th ed. CRC Press; New York: 2013
- 1b Quin LD. A Guide to Organophosphorus Chemistry . Wiley Interscience; New York: 2000
- 1c Monge S, David G. Phosphorus-Based Polymers from Synthesis to Applications . Royal Society of Chemistry; Cambridge: 2014
- 1d Ni H, Chan WL, Lu Y. Chem. Rev. 2018; 118: 9344
- 1e Montchamp J.-L. Acc. Chem. Res. 2014; 47: 77
- 1f Ma YN, Li S.-X, Yang S.-D. Acc. Chem. Res. 2017; 50: 1480
- 1g Baumgartner T, Réau R. Chem. Rev. 2006; 106: 4681
- 1h Queffelec C, Petit M, Janvier P, Knight DA, Bujoli B. Chem. Rev. 2012; 112: 3777
- 2a Jiménez MV, Pérez-Torrente JJ, Bartolomé MI, Oro LA. Synthesis 2009; 1916
- 2b Casey CP, Paulsen EL, Beuttenmueller EW, Proft BR, Petrovich LM, Matter BA, Powell DR. J. Am. Chem. Soc. 1997; 119: 11817
- 3 For a review, see: Bhattacharya AK, Thyarajan G. Chem. Rev. 1981; 81: 415
- 4a Hirao T, Masunaga T, Ohshiro Y, Agawa T. Tetrahedron Lett. 1980; 21: 3595
- 4b Hirao T, Masunaga T, Yamada N, Ohshiro Y, Agawa T. Bull. Chem. Soc. Jpn. 1982; 55: 909
- 5a Liao LL, Gui YY, Zhang XB, Shen G, Liu HD, Zhou WJ, Li J, Yu DG. Org. Lett. 2017; 19: 3735
- 5b Fu WC, So CM, Kwong FY. Org. Lett. 2015; 17: 5906
- 5c Gelman LJ. D, Buchwald SL. Org. Lett. 2003; 5: 2315
- 5d Zhang H.-Y, Sun M, Ma Y.-N, Tian Q.-P, Yang S.-D. Org. Biomol. Chem. 2012; 10: 9627
- 6a Chen T, Zhang J.-S, Han L.-B. Dalton Trans. 2016; 45: 1843
- 6b Xu Q, Han L.-B. J. Organomet. Chem. 2011; 696: 130
- 6c Schwan AL. Chem. Soc. Rev. 2004; 33: 218
- 6d Chen T, Han L.-B. Synlett 2015; 26: 1153
- 6e Demmer CS, Krogsgaard-Larsen N, Bunch L. Chem. Rev. 2011; 111: 7981
- 6f Yang J, Xiao J, Chen T, Yin S.-F, Han L.-B. Chem. Commun. 2016; 52: 12233
- 6g Yang J, Chen T, Han L.-B. J. Am. Chem. Soc. 2015; 137: 1782
- 6h Yang J, Xiao J, Chen T, Han L.-B. J. Org. Chem. 2016; 81: 3911
- 6i Zhang J.-S, Chen T, Zhou Y, Yin S.-F, Han L.-B. Org. Lett. 2018; 20: 6746
- 6j Zhuang R, Xu J, Cai Z, Tang G, Fang M, Zhao Y. Org. Lett. 2011; 13: 2110
- 6k Miao W, Gao Y, Li X, Gao Y, Tang G, Zhao Y. Adv. Synth. Catal. 2012; 354: 2659
- 6l Zhang J.-S, Chen T, Yang J, Han L.-B. Chem. Commun. 2015; 51: 7540
- 7a Rodriguez N, Gooßen LJ. Chem. Soc. Rev. 2011; 40: 5030
- 7b Bonesi SM, Fagnoni M. Chem. Eur. J. 2010; 16: 13572
- 7c Patra T, Maiti D. Chem. Eur. J. 2017; 23: 7382
- 7d Dzik WI, Lange PP, Gooßen LJ. Chem. Sci. 2012; 3: 2671
- 7e Guo L, Rueping M. Acc. Chem. Res. 2018; 51: 51185
- 7f Dermenci A, Dong G. Sci. China Chem. 2013; 56: 685
- 7g Guo L, Rueping M. Chem. Eur. J. 2018; 24: 7794
- 7h Cai X.-H, Yang M, Xie B. Curr. Org. Chem. 2018; 22: 1906
- 7i Perry GJ. P, Larrosa I. Eur. J. Org. Chem. 2017; 2017: 3517
- 7j Hu X.-Q, Liu Z.-K, Hou Y.-X, Gao Y. iScience 2020; 23: 101266
- 8 In 2018, Hosseinian and co-workers outlined the advances in the decarboxylation of carboxylic acids forming P(O)–C bonds, see: Hosseinian A, Nasab FA. H, Ahmadi S, Rahmani Z, Vessally E. RSC Adv. 2018; 8: 26383
- 9a Shaikh TM, Weng C.-M, Hong F.-E. Coord. Chem. Rev. 2012; 256: 771
- 9b Wang X.-B, Goto M, Han L.-B. Chem. Eur. J. 2014; 20: 3631
- 9c Cano I, Chapman AM, Urakawa A, van Leeuwen WN. M. J. Am. Chem. Soc. 2014; 136: 2520
- 9d Schröder F, Tugny C, Salanouve E, Clavier H, Giordano L, Moraleda D, Gimbert Y, Mouriès-Mansuy V, Goddard J.-P, Fensterbank L. Organometallics 2014; 33: 4051
- 10 Jin S, Haug GC, Nguyen VT, Flores-Hansen C, Arman HD, Larionov OV. ACS Catal. 2019; 9: 9764
- 11a Rahman M, Mukherjee A, Kovalev IS, Kopchuk DS, Zyryanov GV, Tsurkan MV, Majee A, Ranu BC, Charushin VN, Chupakhin ON, Santra S. Adv. Synth. Catal. 2019; 361: 2161
- 11b Bi H.-P, Zhao L, Liang Y.-M, Li C.-J. Angew. Chem. Int. Ed. 2009; 48: 792
- 11c Bi H.-P, Chen W.-W, Liang Y.-M, Li C.-J. Org. Lett. 2009; 11: 3246
- 11d Zhang C, Seidel D. J. Am. Chem. Soc. 2010; 132: 1798
- 11e Guo J, Xie Y, Wu Q.-L, Zeng W.-T, Chan AS. C, Weng J, Lu G. RSC Adv. 2018; 8: 16202
- 12 Hu J, Zhao N, Yang B, Wang G, Guo L.-N, Liang Y.-M, Yang S.-D. Chem. Eur. J. 2011; 17: 5516
- 13 In 2013, Boto and co-workers reported the stereoselective reaction of C4-chiral proline derivatives with P(OMe)3 through one-pot two-step decarboxylation/phosphorylation process, five examples were demonstrated, see: Miguelez-Ramos J, Batchu VR, Boto A. Eur. J. Org. Chem. 2013; 846
- 14 Yang D, Zhao D, Mao L, Wang L, Wang R. J. Org. Chem. 2011; 76: 6426
- 15a Peshkov VA, Pereshivko OP, der Eycken EV. V. Chem. Soc. Rev. 2012; 41: 3790
- 15b Rokade BV, Barker J, Guiry PJ. Chem. Soc. Rev. 2019; 48: 4766
- 15c Nasrollahzadeh M, Sajjadi M, Ghorbannezhad F, Sajadi SM. Chem. Rec. 2018; 18: 1409
- 16 It should be noted that the aldehyde-induced decarboxylative phosphorylation of l-proline with P(OEt)3 was achieved with the use of cerium(IV) oxide as a catalyst, similar products were obtained, see: Firouzabadi H, Iranpoor N, Ghaderi A, Ghavami M. Tetrahedron Lett. 2012; 53: 5515
- 17 Kaboudin B, Karami L, Kato J.-y, Aoyama H, Yokomatsu T. Tetrahedron Lett. 2013; 54: 4872
- 18 Wang X, Zhang C, Shen R, Han L.-B. J. Org. Chem. 2020;
- 19a Sartori P, Mosler G. Phosphorus Sulfur 1980; 8: 115
- 19b Kobayashi T, Eda T, Tamura H, Ishibashi H. J. Org. Chem. 2002; 67: 3156
- 20 Bew SP, Brimage RA, Hughes DL, Legentil L, Sharma SV, Wilson MA. J. Org. Chem. 2007; 72: 2655
- 21a Kurosawa MB, Isshiki R, Muto K, Yamaguchi J. J. Am. Chem. Soc. 2020; 142: 7386
- 21b Chen T, Zhao C.-Q, Han L.-B. J. Am. Chem. Soc. 2018; 140: 3139
- 22 Zhou M, Zhou Y, Song Q. Chem. Eur. J. 2015; 21: 10654 correction: Chem. Eur. J. 2015, 21, 11627
- 23 Chen X, Chen X, Li X, Qu C, Qu L, Bi W, Sun K, Zhao Y. Tetrahedron 2017; 73: 2439
- 24 Zhou Y, Zhou M, Chen M, Su J, Du J, Song Q. RSC Adv. 2015; 5: 103977
- 25 Zhou M, Chen M, Zhou Y, Yang K, Su J, Du J, Song Q. Org. Lett. 2015; 17: 1786
- 26 Zhang P, Zhang L, Gao Y, Xu J, Fang H, Tang G, Zhao Y. Chem. Commun. 2015; 51: 7839
- 27 Zeng Y.-F, Tan D.-H, Lv W.-X, Li Q, Wang H. Eur. J. Org. Chem. 2015; 2015: 4335
- 28a Gooßen LJ, Deng G, Levy LM. Science 2006; 313: 662
- 28b Tang J, Biafora A, Gooßen LJ. Angew. Chem. Int. Ed. 2015; 54: 13130
- 28c Myers AG, Tanaka D, Mannion MR. J. Am. Chem. Soc. 2002; 124: 11250
- 28d Kan J, Huang S, Lin J, Zhang M, Su W. Angew. Chem. Int. Ed. 2015; 54: 2199
- 28e Becht J.-M, Drian CL. J. Org. Chem. 2011; 76: 6327
- 28f Zhang Y, Mainolfi N. Chem. Sci. 2012; 3: 3196
- 28g Wang C, Piel I, Glorius F. J. Am. Chem. Soc. 2009; 131: 4194
- 28h Bhadra S, Dzik WI, Gooßen LJ. J. Am. Chem. Soc. 2012; 134: 9938
- 28i Drapeau MP, Bahri J, Lichte D, Gooßen LJ. Angew. Chem. Int. Ed. 2019; 58: 892
- 28j Li J, Bi X, Wang H, Xiao J. Asian J. Org. Chem. 2014; 3: 1113
- 29 Liu C, Ji C.-L, Zhou T, Hong X, Szostak M. Org. Lett. 2019; 21: 9256
- 30 Zhang J.-S, Chen T, Han L.-B. Eur. J. Org. Chem. 2020; 2020: 1148
- 31 Liu C, Szostak M. Angew. Chem. Int. Ed. 2017; 56: 12718
- 32 Xu Y, Wang B, Jiang J, Yu H, Fu Y. J. Org. Chem. 2019; 85: 9474
- 33 Tong W.-Y, Ly TD, Zhao T.-T, Wu Y.-B, Wang X. Chem. Commun. 2020; 56: 113
- 34 Isshiki R, Muto K, Yamaguchi J. Org. Lett. 2018; 20: 1150
- 35 Dong J, Liu L, Ji X, Shang Q, Liu L, Su L, Chen B, Kan R, Zhou Y, Yin S.-F, Han L.-B. Org. Lett. 2019; 21: 3198
- 36a Han L.-B, Tanaka M. J. Am. Chem. Soc. 1996; 118: 1571
- 36b Chen T, Zhou Y, Guo C, Han L.-B. Chem. Lett. 2013; 42: 1065
- 36c Han L.-B, Zhao C.-Q. J. Org. Chem. 2005; 70: 10121
- 36d Han L.-B, Hua R, Tanaka M. Angew. Chem. Int. Ed. 1998; 37: 94
- 36e Han L.-B, Zhang C, Yazawa H, Shimada S. J. Am. Chem. Soc. 2004; 126: 5080
- 36f Kanada J, Tanaka M. Adv. Synth. Catal. 2011; 353: 890
- 36g Han L.-B, Zhao C.-Q, Onozawa S.-y, Goto M, Tanaka M. J. Am. Chem. Soc. 2002; 124: 3842 ; for a review, see ref. 6b
- 37 Wu Y, Liu L, Yan K, Xu P, Gao Y, Zhao Y. J. Org. Chem. 2014; 79: 8118
- 38 Tang L, Wen L, Sun T, Zhang D, Yang Z, Feng C, Wang Z. Asian J. Org. Chem. 2017; 6: 1683
- 39 For a review, see: Gao Y, Tang G, Zhao Y. Chin. J. Org. Chem. 2018; 38: 62
- 40 Liu L, Zhou D, Dong J, Zhou Y, Yin S.-F, Han L.-B. J. Org. Chem. 2018; 83: 4190
- 41 Hu G, Gao Y, Zhao Y. Org. Lett. 2014; 16: 4464
- 42 Niu M, Fu H, Jiang Y, Zhao Y. Chem. Commun. 2007; 272
- 43a Chen Y.-R, Duan W.-L. J. Am. Chem. Soc. 2013; 135: 16754
- 43b Unoh Y, Hirano K, Satoh T, Miura M. Angew. Chem. Int. Ed. 2013; 52: 12975
- 44 Hu G, Zhang Y, Su J, Li Z, Gao Y, Zhao Y. Org. Biomol. Chem. 2015; 13: 8221
- 45a Mahajna M, Quistad GB, Casida JE. Chem. Res. Toxicol. 1996; 9: 241
- 45b Krishna H, Caruthers MH. J. Am. Chem. Soc. 2012; 134: 11618
- 45c Nicolaou KC, Maligres P, Shin J, De Leon E, Rideout D. J. Am. Chem. Soc. 1990; 112: 7825
- 45d Van derpoorten K, Migaud ME. Org. Lett. 2004; 6: 3461
- 46a Lera M, Hayes CJ. Org. Lett. 2000; 2: 3873
- 46b Iorga B, Eymery F, Carmichael D, Savignac P. Eur. J. Org. Chem. 2000; 2000: 3103
- 47 Wang Y, Gan J, Liu L, Yuan H, Gao Y, Liu Y, Zhao Y. J. Org. Chem. 2014; 79: 3678
- 48 Yatsumonji Y, Ogata A, Tsubouchi A, Takeda T. Tetrahedron Lett. 2008; 49: 2265
- 49a Gérard P, Veillard R, Alayrac C, Gaumont A.-C, Evano G. Eur. J. Org. Chem. 2016; 2016: 633
- 49b Jouvin K, Heimburger J, Evano G. Chem. Sci. 2012; 3: 756
- 50 Gao Y, Wang G, Chen L, Xu P, Zhao Y, Zhou Y, Han L.-B. J. Am. Chem. Soc. 2009; 131: 7956
- 51a Zhu Y, Chen T, Li S, Shimada S, Han L.-B. J. Am. Chem. Soc. 2016; 138: 5825
- 51b Zhou Y, Yin S, Gao Y, Zhao Y, Goto M, Han L.-B. Angew. Chem. Int. Ed. 2010; 49: 6852
- 51c Li C, Chen T, Han L.-B. Dalton Trans. 2016; 45: 14893
- 51d Feng C.-G, Ye M, Xiao KJ, Li S, Yu J.-Q. J. Am. Chem. Soc. 2013; 135: 9322
- 51e Ke J, Tang Y, Yin H, Li Y, Cheng Y, Liu C, Lei A. Angew. Chem. Int. Ed. 2015; 54: 6604
- 51f Zhou Y, Yang J, Chen T, Yin S.-F, Han D, Han L.-B. Bull. Chem. Soc. Jpn. 2014; 87: 400
- 51g Basle O, Li C.-J. Chem. Commun. 2009; 4124
- 52a Liu P, Yang J, Li P, Wang L. Appl. Organomet. Chem. 2011; 25: 830
- 52b Moglie Y, Mascaro E, Gutierrez V, Alonso F, Radivoy G. J. Org. Chem. 2016; 81: 1813
- 52c Yang J, Chen T, Zhou Y, Yin S, Han L.-B. Chem. Commun. 2015; 51: 3549
- 52d Liu L, Wu Y, Wang Z, Zhu J, Zhao Y. J. Org. Chem. 2014; 79: 6816
- 52e Yang J, Chen T, Zhou Y, Yin S.-F, Han L.-B. Organometallics 2015; 34: 5095
- 52f Wang T, Chen S, Shao A, Gao M, Huang Y, Lei A. Org. Lett. 2015; 17: 118
- 52g Zhang J.-Q, Chen T, Zhang J.-S, Han L.-B. Org. Lett. 2017; 19: 4692
-
53 The cleavage of P(O)–H bonds does not required copper catalysts. For direct ligand exchange of P(O)–H compounds with Pd(OAc)2, see refs 21b and 52e.
- 54 Li X, Yang F, Wu Y, Wu Y. Org. Lett. 2014; 16: 992
- 55 It should be noted that the decarboxylative coupling of 3-arylpropynoicaromatic alkynyl carboxylic acids with dialkyl hydrazinylphosphonates forming alkynyl phosphoryl compounds was also achieved through copper catalysis, see: Chen W, Ma D, Hu G, Hong Z, Gao Y, Zhao Y. Synth. Commun. 2016; 46: 1175
- 56 For a selected example, see: Cao H, Jiang H, Feng H, Kwan JM. C, Liu X, Wu J. J. Am. Chem. Soc. 2018; 140: 16360
- 57a Liu K, Song C, Lei A. Org. Biomol. Chem. 2018; 16: 2375
- 57b Tang S, Liu Y, Lei A. Chem 2018; 4: 27
- 57c Francke R, Little RD. Chem. Soc. Rev. 2014; 43: 2492
- 57d Yang L, Ma F.-X, Xu F, Li D, Su L, Xu H.-C, Wang C. Chem. Asian J. 2019; 14: 3557
- 57e Wiebe A, Gieshoff T, Mohle S, Rodrigo E, Zirbes M, Waldvogel SR. Angew. Chem. Int. Ed. 2018; 57: 5594
For selected examples, see:
For selected examples, see:
For selected reviews, see:
For selected examples, see:
For selected reviews, see:
For coordination of P(O)–H compounds with metals, see:
For a review, see:
For selected examples, see:
For reviews on A3 coupling, see:
Despite the structural similarity, H-phosphonates, H-phosphinates, and secondary H-phosphine oxides usually show different reactivity in transition-metal catalysis. For a selected example on related studies, see:
For selected examples, see:
For selected examples, see:
Dehydrogenative coupling with P(O)–H compounds is a powerful strategy for the synthesis of organophosphorus compounds. For a review, see ref. 6a. For selected examples, see: