SynOpen, Inhaltsverzeichnis CC BY-NC-ND 4.0 · SynOpen 2020; 04(04): 66-70DOI: 10.1055/s-0040-1707305 letter A Diastereoselective Synthetic Approach towards the Synthesis of Berkeleylactone F and Its 4-epi-Derivative Srijana Subba a Department of Chemistry, National Institute of Technology Sikkim, Ravangla, South Sikkim 737139, India eMail: sumit.che@nitsikkim.ac.in , Sumit Saha ∗ a Department of Chemistry, National Institute of Technology Sikkim, Ravangla, South Sikkim 737139, India eMail: sumit.che@nitsikkim.ac.in , Susanta Mandal b Department of Chemistry, Sikkim University, Tadong, Gangtok, Sikkim737102, India › Institutsangaben Artikel empfehlen Abstract Alle Artikel dieser Rubrik Abstract A diastereoselective approach to the synthesis of berkeleylactone F is presented. The synthetic strategy is initiated with commercially available (R)-glycidol, 1,6-heptadiyne, and (R)-(+)-methyl lactate. The key feature of the approach is directional functionalization at both terminals of 1,6-heptadiyne. Key words Key wordsmacrolide - epoxide - ring opening - heptadiyne Volltext Referenzen References and Notes 1a Laslop NV, Mankin AS. Trends Biochem. Sci. 2018; 43: 668 1b Kanoh S, Rubin BK. Clin. Microbiol. Rev. 2010; 23: 590 1c Przybylski P. Curr. Org. Chem. 2011; 15: 328 1d Gaynor M, Mankin AS. Curr. Top. Med. Chem. 2003; 3: 949 2a Feng Y, Yu Z, Zhang S, Xue Z, Huang J, Zhang H, Wan X, Chen A, Wang J. J. Agric. Food Chem. 2019; 67: 4782 2b Arsic B, Barber J, Čikoš A, Mladenovic M, Stankovic N, Novak P. Int. J. Antimicrob. Agents 2018; 51: 283 2c Cheng H, Huang H, Huang G. Eur. J. Med. Chem. 2018; 157: 925 2d Gao H, Huang G. Bioorg. Med. Chem. 2018; 26: 5578 2e Hajare AK, Ravikumar V, Khaleel S, Bhuniya D, Reddy DS. J. Org. Chem. 2011; 76: 963 2f Sugamata R, Sugawara A, Nagao T, Suzuki K, Hirose T, Yamamoto K, Oshima M, Kobayashi K, Sunazuka T, Akagawa KS, Omura S, Nakayama T, Suzuki K. J. Antibiot. 2014; 67: 213 2g Pan JJ, Wana X, Zhang SY, Huang J, Zhang H, Chen AL, Wang JD. Bioorg. Med. Chem. Lett. 2016; 26: 3376 2h Yadav JS, Das SK, Sabitha G. J. Org. Chem. 2012; 77: 11109 3a Michel KH, Demoarco PV, Nagarajan R. J. Antibiot. 1977; 30: 571 3b Chatterjee S, Subramanian M, Sharma A, Chattopadhyay S. Nat. Prod. Commun. 2018; 13: 1535 3c Chatterjee S, Sharma A, Chattopadhyay S. RSC Adv. 2014; 4: 42697 3d Reddy R, Suman D, Rao NN. Synlett 2012; 23: 272 3e Saidhareddya P, Shaw AK. RSC Adv. 2015; 5: 29114 4a Baoa J, Xua XY, Zhanga XY, Qi SH. Nat. Prod. Commun. 2013; 8: 1127 4b Talakokkula A, Baikadi K, Narsaiah AV. ARKIVOC 2019; 307 4c Jena BK, Reddy GS, Mohapatra DK. Org. Biomol. Chem. 2017; 15: 1863 4d Kandimalla SR, Reddy BV. S, Sabitha G. Synth. Commun. 2019; 49: 3191 5a Stierle AA, Stierle DB, Decato D, Priestley ND, Alverson JB, Hoody J, McGrath K, Klepacki D. J. Nat. Prod. 2017; 80: 1150 5b Ferko B, Zeman M, Formica M, Veselý S, Doháňošová J, Moncol J, Olejníková P, Berkeš D, Jakubec P, Dixon DJ, Caletková O. J. Org. Chem. 2019; 84: 7159 5c Reddy MS, Manikanta G, Krishna PR. Tetrahedron Lett. 2019; 60: 504 6a Sudina PR, Motati DR, Seema A. J. Nat. Prod. 2018; 81: 1399 6b Krishna PR, Prabhakar S, Ramana DV. Tetrahedron Lett. 2012; 53: 6843 6c Venkatraman L, Aldrich CC, Sherman DH, Fecik RA. J. Org. Chem. 2005; 70: 7267 6d Reddy CR, Suman D, Rao NN. Eur. J. Org. Chem. 2013; 3786 6e Avocetien KF, Li JJ, Liu X, Wang Y, Xing Y, O’Doherty GA. Org. Lett. 2016; 18: 4970 7a Jiang S, Liu ZH, Sheng G, Zeng BB, Cheng XG, Wu YL, Yao ZJ. J. Org. Chem. 2002; 67: 3404 7b Liau BB, Gnanadesikan V, Corey EJ. Org. Lett. 2008; 10: 1055 7c Maezaki N, Tominaga H, Kojima N, Yanai M, Urabe D, Tanaka T. Chem. Commun. 2004; 406 7d Maezaki N, Tominaga H, Kojima N, Yanai M, Urabe D, Ueki R, Tanaka T, Yamori T. Chem. Eur. J. 2005; 11: 6237 7e Falck JR, Wallukat G, Puli N, Goli M, Arnold C, Konkel A, Rothe M, Fischer R, Müller DN, Schunck WH. J. Med. Chem. 2011; 54: 4109 7f Liu HX, Huang GR, Zhang HM, Jiang S, Wu JR, Yao ZJ. ChemBioChem 2007; 8: 172 7g Jiang S, Li Y, Chen XG, Hu TS. Wu Y. L, Yao ZJ. Angew. Chem. Int. Ed. 2004; 43: 329 7h Zhao H, Gorman JS. T, Pagenkopf BL. Org. Lett. 2006; 8: 4379 8a González-Gil I, Zian D, Vázquez-Villa H, Hernández-Torres G, Martínez RF, Khiar-Fernández N, Rivera R, Kihara Y, Devesa I, Mathivanan S, Rosell del Valle C, Zambrana-Infantes E, Puigdomenech M, Cincilla G, Sanchez-Martinez M, Rodríguez de Fonseca F, Ferrer-Montiel AV, Chun J, López-Vales R, López-Rodríguez ML, Ortega-Gutiérrez S. J. Med. Chem. 2020; 63: 2372 8b Iio K, Sachimori S, Watanabe T, Fuwa H. Org. Lett. 2018; 20: 7851 8c Shiina I, Takasuna Y, Suzuki R, Oshiumi H, Komiyama Y, Hitomi S, Fukui H. Org. Lett. 2006; 8: 5279 8d Ramulu U, Ramesh D, Rajaram S, Reddy SP, Venkatesham K, Venkateswarlu Y. Tetrahedron: Asymmetry 2012; 23: 117 9a Léséleuc M, Godin E, Parisien-Collette S, Lévesque A, Collins SK. J. Org. Chem. 2016; 81: 6750 9b Shin D, Yang JE, Lee SB, Nho CW. Bioorg. Med. Chem. Lett. 2010; 20: 7549 9c Peňaška T, Koukal P, Kotora M. Eur. J. Org. Chem. 2018; 147 9d Reddy KS. N, Reddy AY, Sabitha G. Synthesis 2016; 48: 3812 9e Trost BM, Sieber JD, Qian W, Dhawan R, Ball ZT. Angew. Chem. Int. Ed. 2009; 48: 5478 9f Wu J, Wu Y, Jian Y, Zhang Y. Chin. J. Chem. 2009; 27: 13 10a Mengel A, Reiser O. Chem. Rev. 1999; 99: 1191 10b Guillarme S, Plé K, Banchet A, Liard A, Haudrechy A. Chem. Rev. 2006; 106: 2355 11a Beemelmanns C, Woznica A, Alegado RA, Cantley AM, King N, Clardy J. J. Am. Chem. Soc. 2014; 136: 10210 11b Porta A, Chiesa F, Quaroni M, Persico M, Moratti R, Zanoni G, Vidari G. Eur. J. Org. Chem. 2014; 2111 12a Sabitha G, Reddy CN, Gopal P, Yadav JS. Tetrahedron Lett. 2010; 51: 5736 12b Raghavan S, Yelleni MK. R. Tetrahedron 2017; 73: 4371 12c Rao JP, Rao BV. Tetrahedron: Asymmetry 2010; 21: 930 12d Kumar P, Naidu SV. J. Org. Chem. 2006; 71: 3935 12e Roush WR, Bennett CE, Roberts SE. J. Org. Chem. 2001; 66: 6389 12f Allu SR, Banne S, Jiang J, Qi N, Guo J, He Y. J. Org. Chem. 2019; 84: 7227 12g Kim D, Lee J, Shim PJ, Lim JI, Jo H, Kim S. J. Org. Chem. 2002; 67: 764 12h Reetz MT. Angew. Chem., Int. Ed. Engl. 1984; 23: 556 13 Synthesis of (S)-1-(Benzyloxy)deca-4,9-diyn-2-ol (4): To a solution of 1,6-heptadiyne (0.5 mL, 4.57 mmol, 1.0 equiv) in anhydrous THF (10 mL) at –78 °C under argon was added n-BuLi (4.6 mL, 4.6 mmol, 1.0 M in hexane 1 equiv). The resulting mixture was stirred for 30 min at this temperature and a solution of epoxide 3 (250 mg, 1.52 mmol, 0.33 equiv, dissolved in anhydrous THF, 5 mL) was added dropwise, followed by rapid addition of BF3·Et2O (freshly distilled, 0.6 mL, 6.66 mmol, 1.45 equiv) The reaction mixture was stirred for 1.5 h and then quenched with saturated aqueous NH4Cl solution and extracted with Et2O (3 × 20 mL). The combined organic extracts were washed with water and brine, dried over anhydrous Na2SO4 and concentrated under vacuum. The crude material was purified by column chromatography on silica gel (10% EtOAc in pet ether (PE)) to give pure alcohol 4 (0.88 g, 3.43 mmol 75%) as a yellow oily liquid. TLC: Rf 0.76 (10% EtOAc in PE). IR: 1096, 1428, 1633, 2115, 2946, 3453 cm–1. 1H NMR (400 MHz, CDCl3): δ = 1.71 (p, J = 7.0 Hz, 2 H), 1.99 (t, J = 2.6 Hz, 1 H), 2.28–2.33 (m, 4 H), 2.42–2.46 (m, 2 H), 3.52 (dd, J 1,2 = 3.92 Hz, J 1,3 = 9.52 Hz, 1 H), 3.61 (dd, J 1,2 = 6.68 Hz, J 1,3 = 9.52 Hz, 1 H), 3.92–3.98 (m, 1 H), 4.59 (s, 2 H), 7.30–7.40 (m, 5 H). 13C NMR (100 MHz, CDCl3): δ = 17.5, 17.8, 23.9, 27.7, 68.8, 69.2, 72.9, 73.4, 76.4, 81.4, 83.5, 127.8, 128.3, 137.9. HRMS: m/z [M + Na]+ calcd for C17H20O2Na: 279.1361; found: 279.1361. 14 Synthesis of (5S,14S,15R)-5-((Benzyloxy)methyl)-15,17,18,18-pentamethyl-2,4,16-trioxa-17-silanonadeca-7,12-diyn-14-ol (6): (R)-(+)-Methyl lactate (1.0 g, 9.60 mmol, 1 equiv), was dissolved in anhydrous DMF (5 mL), and imidazole (1.06 g, 15.57 mmol, 1.6 equiv) was added. The solution was cooled in an ice bath and TBSCl (1.45 g, 9.60 mmol, 1 equiv) was added slowly in portions. After the completion of addition, the ice bath was allowed to melt gradually overnight. After 18 h, the reaction mixture was diluted with water (3 mL) and hexanes (10 mL). The aqueous phase was separated and extracted with hexanes (60 mL), and the combined organic extract was washed with brine, dried over anhydrous Na2SO4, filtered, and concentrated by rotary evaporation to afford the TBS ether (1.6 g, 7.33 mmol, 76%) as a colorless liquid, which was used without purification. The above prepared TBS protected (R)-(+)-methyl lactate (1.00 g, 4.58 mmol, 1 equiv), in hexanes (20 mL), was cooled to –78 °C, DIBAL-H (4.7 mL, 1.0 M in hexanes, 4.7 mmol, 1.0 equiv) was added dropwise and the mixture was stirred for 45 minutes at –78 °C. The reaction mixture was then quenched by addition of MeOH (1.0 mL) and stirred for 15 min at –78 °C. The cold solution was transferred to a round-bottom flask containing saturated aqueous Rochelle salt (10 mL) and the resulting mixture was vigorously stirred for 30 min. The aqueous phase was separated and extracted with hexanes, and the combined organic extracts were washed with brine, dried over anhydrous Na2SO4, filtered, and concentrated to afford the aldehyde (0.70 g, 3.66 mmol, 80%) as a colorless liquid. To a solution of compound 5 (0.90 g, 3.0 mmol, 1 equiv) in anhydrous THF (15 mL), n-BuLi (.3.0 mL, 3.0 mmol, 1 M in THF, 1 equiv) was added dropwise at –78 °C. The solution was stirred for 30 min at the same temperature and then freshly prepared aldehyde was added to the reaction mixture dropwise (0.70 g, 3.66 mmol, 1.2 equiv over 30 mins) and the mixture was stirred for 2.5 h. The reaction mixture was quenched with saturated aqueous NH4Cl and the organic phase was separated and evaporated under reduced pressure. The aqueous layer was extracted with EtOAc and the organic extract was washed with brine, dried over anhydrous Na2SO4, filtered and concentrated by rotary evaporation. Column chromatographic purification (10% EtOAc in PE) of the resultant crude residue provided pure alcohol 6 (1.20 g, 2.45 mmol, 80%) as a pale-yellow liquid. TLC: Rf 0.67 (5% EtOAc in PE). IR: 1252, 1494, 1628, 2245, 2985, 3470 cm–1. 1H NMR (400 MHz, CDCl3): δ = 0.11 (s, 3 H), 0.12 (s, 3 H), 0.92 (s, 9 H), 1.24 (d, J = 6.24 Hz, 3 H), 1.59 (brs, 1 H), 1.68 (p, J = 6.43 Hz, 2 H), 2.24–2.37 (m, 4 H), 2.48–2.53 (m, 2 H), 3.41 (s, 3 H), 3.62–3.64 (m, 2 H), 3.86–3.94 (m, 2 H), 4.28 (m, 1 H), 4.59 (s, 2 H), 4.77 (s, 2 H), 7.30–7.37 (m, 5 H). 13C NMR (100 MHz, CDCl3): δ = –4.7, –4.4, 17.9, 22.2, 25.8, 27.9, 55.5, 67.1, 71.2, 71.6, 73.4, 74.8, 78.6, 80.9, 85.8, 95.9, 127.6, 127.6, 128.4S, 138.2. HRMS: m/z [M + Na]+ calcd for C28H44O5SiNa: 511.7212; found: 511.7211. Zusatzmaterial Zusatzmaterial Supporting Information