Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2020; 52(23): 3640-3649
DOI: 10.1055/s-0040-1707348
DOI: 10.1055/s-0040-1707348
paper
Synthesis of Pyrrolo[1,2-a]indoles via (3+2)-Annulations of (Aza)-para-Quinone Methides with Indoles
Project of Young Innovative Talents in Colleges and Universities in Guangdong Province (2018KQNCX263), Jiangmen Program for Innovative Research Team (2018630100180019806), High-level Talent Research Start-up Project of Wuyi University (2018AL002, 2018AL003, 2018AL007), Jiangmen City Science and Technology Basic Research Project (2019030102140008921, 2019030102120008927), Science Foundation for Young Teachers of Wuyi University (NO 2019td02). The COVID-19 Epidemic Prevention and Control Project of Wuyi University (2020FKZX01), Department of Education of Guangdong Province (2019KTSCX184).Further Information
Publication History
Received: 07 July 2020
Accepted after revision: 22 July 2020
Publication Date:
04 August 2020 (online)
![](https://www.thieme-connect.de/media/synthesis/202023/lookinside/thumbnails/ss-2020-g0369-op_10-1055_s-0040-1707348-1.jpg)
Abstract
An efficient and straightforward Brønsted acid mediated (3+2)-annulation of (aza)-para-quinone methides, generated in situ from propargylic alcohols and indoles, has been developed involving 1,8-conjugate addition/5-endo annulation cascade. This protocol affords a mild and effective method for the construction of synthetically important and structurally interesting functionalized pyrrolo[1,2-a]indoles.
Key words
para-quinone methides - para-quinone methide imines - 1,8-conjugate addition - [3+2] annulation - pyrrolo[1,2-a]indolesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1707348.
- Supporting Information
-
References
- 1a Weber A, Dehn R, Schlager N, Dieter B, Kirschning A. Org. Lett. 2014; 16: 568
- 1b Nguyen PH, Zhao BT, Ali MY, Choi JS, Rhyu DY, Min BS, Woo MH. J. Nat. Prod. 2015; 78: 34
- 2a Hamels D, Dansette PM, Hillard EA, Top S, Vessières A, Herson P, Jaouen G, Mansuy D. Angew. Chem. Int. Ed. 2009; 48: 924
- 2b Sridar C, D’Agostino J, Hollenberg PF. Drug Metab. Dispos. 2012; 40: 2280
- 2c Albertson AK. F, Lumb J.-P. Angew. Chem. Int. Ed. 2015; 54: 2204
- 2d Matsuura BS, Keylor MH, Li B, Lin Y, Allison S, Pratt DA, Stephenson CR. Angew. Chem. Int. Ed. 2015; 54: 3754
- 3a Parra A, Tortosa M. ChemCatChem 2015; 7: 1524
- 3b Caruana L, Fochi M, Bernardi L. Molecules 2015; 20: 11733
- 3c Chauhan P, Kaya U, Enders D. Adv. Synth. Catal. 2017; 359: 888
- 3d Lima CG. S, Pauli FP, Costa DC. S, deSouza AS, Forezi LS. M, Ferreira VF, de Carvalho da Silva F. Eur. J. Org. Chem. 2020; 2020: 2650
- 4a Zhang Z.-P, Dong N, Li X. Chem. Commun. 2017; 53: 1301
- 4b Jadhav AS, Anand RV. Org. Biomol. Chem. 2017; 15: 56
- 4c Ke M, Song Q. Adv. Synth. Catal. 2017; 359: 384
- 4d Molleti N, Kang JY. Org. Lett. 2017; 19: 958
- 4e Zhuge R, Wu L, Quan M, Butt N, Yang G, Zhang W. Adv. Synth. Catal. 2017; 359: 1028
- 4f Goswami P, Singh G, Anand RV. Org. Lett. 2017; 19: 1982
- 4g Lin C, Shen Y, Huang B, Liu Y, Cui S. J. Org. Chem. 2017; 82: 3950
- 5a Chu W.-D, Zhang L.-F, Bao X, Zhao X.-H, Zeng C, Du J.-Y, Zhang G.-B, Wang F.-X, Ma X.-Y, Fan C.-A. Angew. Chem. Int. Ed. 2013; 52: 9229
- 5b Caruana L, Kniep F, Johansen TK, Poulsen PH, Jørgensen KA. J. Am. Chem. Soc. 2014; 136: 15929
- 5c Lou Y, Cao P, Jia T, Zhang Y, Wang M, Liao J. Angew. Chem. Int. Ed. 2015; 54: 12134
- 5d Wang Z, Wong YF, Sun J. Angew. Chem. Int. Ed. 2015; 54: 13711
- 5e Dong N, Zhang Z.-P, Xue X.-S, Li X, Cheng J.-P. Angew. Chem. Int. Ed. 2016; 55: 1460
- 5f Jarava-Barrera C, Parra A, López A, Cruz-Acosta F, Collado-Sanz D, Cárdenas DJ, Tortosa M. ACS Catal. 2016; 6: 442
- 5g Zhao K, Zhi Y, Wang A, Enders D. ACS Catal. 2016; 6: 657
- 5h He F.-S, Jin J.-H, Yang Z.-T, Yu X, Fossey JS, Deng W.-P. ACS Catal. 2016; 6: 652
- 5i Li X, Xu X, Wei W, Lin A, Yao H. Org. Lett. 2016; 18: 428
- 5j Deng Y.-H, Zhang X.-Z, Yu K.-Y, Yan X, Du J.-Y, Huang H, Fan C.-A. Chem. Commun. 2016; 52: 4183
- 5k Zhang X.-Z, Deng Y.-H, Yan X, Yu K.-Y, Wang F.-X, Ma X.-Y, Fan C.-A. J. Org. Chem. 2016; 81: 5655
- 5l Wong YF, Wang Z, Sun J. Org. Biomol. Chem. 2016; 14: 5751
- 5m Ge L, Lu X, Cheng C, Chen J, Cao W, Wu X, Zhao G. J. Org. Chem. 2016; 81: 9315
- 5n Chen M, Sun J. Angew. Chem. Int. Ed. 2017; 56: 4583
- 5o Bai J.-F, Yasumoto K, Kano T, Maruoka K. Angew. Chem. Int. Ed. 2019; 58: 8898
- 5p Toran R, Vila C, Sanz-Marco A, Muñoz MC, Pedro JR, Blay G. Eur. J. Org. Chem. 2020; 2020: 627
- 5q Qi S.-S, Jiang Z.-H, Chu M.-M, Wang Y.-F, Chen X.-Y, Ju W.-Z, Xu D.-Q. Org. Biomol. Chem. 2020; 18: 2398
- 5r Zhou J, Bai L.-J, Liang G.-J, Xu Q.-G, Zhou L.-P, Zhou H. Org. Biomol. Chem. 2020; 18: 2641
- 6 Qian D, Wu L, Lin Z, Sun J. Nat. Commun. 2017; 8: 567
- 7 Zhang P, Huang Q, Cheng Y, Li R, Li P, Li W. Org. Lett. 2019; 21: 503
- 8 Chen M, Qian D, Sun J. Org. Lett. 2019; 21: 8127
- 9 Zhang L, Han Y, Huang A, Zhang P, Li P, Li W. Org. Lett. 2019; 21: 7415
- 10 Liu X, Zhang J, Bai L, Wang L, Yang D, Wang R. Chem. Sci. 2020; 11: 671
- 11a Zhang X.-Z, Du J.-Y, Deng Y.-H, Chu W.-D, Yan X, Yu K.-Y, Fan C.-A. J. Org. Chem. 2016; 81: 2598
- 11b Zhang X.-Z, Deng Y.-H, Gan K.-J, Yan X, Yu K.-Y, Wang F.-X, Fan C.-A. Org. Lett. 2017; 19: 1752
- 11c Deng Y.-H, Chu W.-D, Zhang X.-Z, Yan X, Yu K.-Y, Yang L.-L, Huang H, Fan C.-A. J. Org. Chem. 2017; 82: 5433
- 12a Bass PD, Gubler DA, Judd TC, Williams RM. Chem. Rev. 2013; 113: 6816
- 12b Galm U, Hager MH, Van Lanen SG, Ju J, Thorson JS, Shen B. Chem. Rev. 2005; 105: 739
- 13 Dethe DH, Erande RD, Ranjan A. J. Am. Chem. Soc. 2011; 133: 2864
- 14a Monakhova N, Ryabova S, Makarov V. J. Heterocycl. Chem. 2016; 53: 685
- 14b Plieva AT. Chem. Heterocycl. Compd. 2017; 53: 153
- 14c Lorton C, Voituriez A. Eur. J. Org. Chem. 2019; 2019: 5133
- 15a Chen S, Zhang P, Shu W, Gao Y, Tang G, Zhao Y. Org. Lett. 2016; 18: 5712
- 15b Xu J, Yu X, Song Q. Org. Lett. 2017; 19: 980
- 15c Cui Z, Du D.-M. J. Org. Chem. 2018; 83: 5149
- 15d Reddy CR, Kajare RC, Punna N. Chem. Commun. 2020; 56: 3445
- 16a Cai Q, Zheng C, You S.-L. Angew. Chem. Int. Ed. 2010; 49: 8666
- 16b Tucker JW, Narayanam JM. R, Krabbe SW, Stephenson CR. J. Org. Lett. 2010; 12: 368
- 16c Song W, Li M, He J, Li J, Dong K, Zheng Y. Org. Biomol. Chem. 2019; 17: 2663
- 17 Zhang J, Ni T, Yang W.-L, Deng W.-P. Org. Lett. 2020; 22: 4547
- 18 During the preparation of this manuscript, Li et al. reported a closely related work with respect to catalysis by chiral phosphoric acid: Bai J.-F, Zhao L, Wang F, Yan F, Kano T, Maruoka K, Li Y. Org. Lett. 2020; 22: 5439
For selected examples, see:
For examples, see:
For recent reviews on the chemistry of p-QMs, see:
For very recent selected examples on racemic 1,6-addition of p-QMs, see:
For catalytic asymmetric 1,6-addition of p-QMs, see:
For selected reviews on synthesis of pyrrolo[1,2-a]indole core, see: