Synthesis 2020; 52(15): 2267-2276
DOI: 10.1055/s-0040-1707471
paper
© Georg Thieme Verlag Stuttgart · New York

Direct Synthesis of 5-Acyl-3-oxy-4-pyrones Based On Acid-­Catalyzed Acylation of Enaminodiones with Acylbenzotriazoles via Soft Enolization

Institute of Natural Sciences and Mathematics, Ural Federal University, 51 Lenina Ave., 620000 Ekaterinburg, Russian Federation   Email: dmitry.obydennov@urfu.ru
,
Viktoria V. Viktorova
,
Elena V. Chernyshova
,
Alexander S. Shirinkin
,
Sergey A. Usachev
,
Vyacheslav Y. Sosnovskikh
› Author Affiliations
This work was financially supported by the Russian Science Foundation (Grant 18-73-00186).
Further Information

Publication History

Received: 02 March 2020

Accepted after revision: 21 March 2020

Publication Date:
16 April 2020 (online)


Abstract

A novel convenient acid-catalyzed acylation of enaminodiones with acylbenzotriazoles via soft enolization has been developed for the direct synthesis of hard-to-reach 5-acyl-3-oxy-4-pyrones. The important advantages of the reaction include broad substrate scope, mild conditions, scalability, and readily isolation of products by crystallization without the use of chromatography. Further modification of the pyrone ring and synthesis of various azaheterocycles via ring-opening transformation have been demonstrated for the preparation of potential scaffolds for inhibition of metalloenzymes.

Supporting Information

Primary Data

 
  • References

    • 1a Nicoletti R, Manzo E, Ciavatta ML. Int. J. Mol. Sci. 2009; 10: 1430
    • 1b Mizushina Y, Motoshima H, Yamaguchi Y, Takeuchi T, Hirano K, Sugawara F, Yoshida H. Mar. Drugs 2009; 7: 624
    • 1c Nicoletti R, Scognamiglio M, Fiorentino A. Mini-Rev. Med. Chem. 2014; 14: 1043
    • 1d Riko R, Nakamura H, Shindo K. J. Antibiot. 2014; 67: 179
    • 2a Gerlach EM, Korkmaz MA, Pavlinov I, Gao Q, Aldrich LN. ACS Chem. Biol. 2019; 14: 1536
    • 2b Date AA, Destache CJ. Drug Discovery Today 2016; 21: 333
    • 3a Dong S, Fang C, Tang W, Lu T, Du D. Org. Lett. 2016; 18: 3882
    • 3b Rodrigues CA. B, Misale A, Schiel F, Maulide N. Org. Biomol. Chem. 2017; 15: 680
    • 3c Wang M, Shi L, Li Y, Liu Q, Pan L. J. Org. Chem. 2019; 84: 9603
    • 3d Maezono SM. B, Park GE, Lee YR. Org. Chem. Front. 2018; 5: 3447
    • 3e Hu X, Ding A, Sun N, Hu B, Shen Z, Jin L. Org. Process Res. Dev. 2019; 23: 2439
    • 3f Obydennov DL, Khammatova LR, Eltsov OS, Sosnovskikh VY. Org. Biomol. Chem. 2018; 16: 1692
    • 3g Obydennov DL, Khammatova LR, Sosnovskikh VY. Mendeleev Commun. 2017; 27: 172
    • 3h Obydennov DL, Pan’kina EO, Sosnovskikh VY. J. Org. Chem. 2016; 81: 12532
    • 4a Agrawal A, DeSoto J, Fullagar JL, Maddali K, Rostami S, Richman DD, Pommier Y, Cohen SM. Proc. Natl. Acad. Sci. U.S.A. 2012; 109: 2251
    • 4b Hare S, Vos AM, Clayton RF, Thuring JW, Cummings MD, Cherepanov P. Proc. Natl. Acad. Sci. U.S.A. 2010; 107: 20057
    • 4c Wang L, Sarafianos SG, Wang Z. Acc. Chem. Res. 2020; 53: 218
    • 5a Credille CV, Dick BL, Morrison CN, Stokes RW, Adamek RN, Wu NC, Wilson IA, Cohen SM. J. Med. Chem. 2018; 61: 10206
    • 5b Kankanala J, Wang Y, Geraghty RJ, Wang Z. ChemMedChem 2018; 13: 1658
    • 5c Kankanala J, Kirby KA, Liu F, Miller L, Nagy E, Wilson DJ, Parniak MA, Sarafianos SG, Wang Z. J. Med. Chem. 2016; 59: 5051
    • 6a Hughes DL. Org. Process Res. Dev. 2019; 23: 716
    • 6b Schreiner E, Richter F, Nerdinger S. Top. Heterocycl. Chem. 2016; 44: 187
    • 6c Sankareswaran S, Mannam M, Chakka V, Mandapati SR, Kumar P. Org. Process Res. Dev. 2016; 20: 1461
    • 7a Zirac M, Eftekhari-sis B. Turk. J. Chem. 2015; 39: 439
    • 7b Paul S, Bhattachary AK. Org. Biomol. Chem. 2018; 16: 444
    • 7c Güntzel P, Forster L, Schollmayer C, Holzgrabe U. Org. Prep. Proced. Int. 2018; 50: 512
    • 7d Ehrlich M, Carell T. Eur. J. Org. Chem. 2013; 77
    • 7e Manzo E, Ciavatta ML. Tetrahedron 2012; 68: 4107
    • 8a Yasukata T, Masui M, Ikarashi F, Okamoto K, Kurita T, Nagai M, Sugata Y, Miyake N, Hara S, Adachi Y, Sumino Y. Org. Process Res. Dev. 2019; 23: 565
    • 8b Miyagawa M, Akiyama T, Taoda Y, Takaya K, Takahashi-Kageyama C, Tomita K, Yasuo K, Hattori K, Shano S, Yoshida R, Shishido T, Yoshinaga T, Sato A, Kawai M. J. Med. Chem. 2019; 62: 8101
  • 9 Obydennov DL, Chernyshova EV, Sosnovskikh VY. J. Org. Chem. 2019; 84: 6491
    • 10a Lim D, Zhou G, Livanos AE, Fang F, Coltart DM. Synthesis 2008; 2148
    • 10b Zhou G, Lim D, Coltart DM. Org. Lett. 2008; 10. 3809
    • 10c Aderibigbe SO, Coltart DM. J. Org. Chem. 2019; 84: 9770
    • 10d St-Gelais A, Alsarraf J, Legault J, Gauthier C, Pichette A. Org. Lett. 2018; 20: 7424
    • 11a Trushkov IV, Uchuskin MG, Butin AV. Eur. J. Org. Chem. 2015; 2999
    • 11b Abaev VT, Trushkov IV, Uchuskin MG. Chem. Heterocycl. Compd. 2016; 52: 973
  • 12 Gutnov A. Chem. Heterocycl. Compd. 2016; 52: 87
  • 13 Obydennov DL, Goncharov AO, Sosnovskikh VY. Russ. Chem. Bull. 2016; 65: 2233
  • 14 Katritzky AR, Pastor A. J. Org. Chem. 2000; 65: 3679
  • 15 Zupancic S, Svete J, Stanovnik B. Heterocycles 2008; 75: 899