Subscribe to RSS
DOI: 10.1055/s-0040-1707514
Transition-Metal-Free, Intermolecular Azidoheteroarylation of Alkenes: Efficient Access to β-Azidoalkylated Quinoxalinones and Preliminary Antifungal Evaluation Against Magnaporthe grisea
We gratefully acknowledge the Start-up Grant from South China Agricultural University and Guangdong Basic and Applied Basic Research Foundation 2019 (A1515011824) for the financial support.Publication History
Received: 02 March 2020
Accepted after revision: 23 March 2020
Publication Date:
27 April 2020 (online)

Abstract
An efficient, PhI(OAc)2-mediated, radical azidoheteroarylation of alkenes under transition-metal-free conditions is reported by employing TMSN3 and quinoxalin-2(1H)-ones as coupling partners. This domino reaction allows an efficient synthesis of valuable orangoazides containing quinoxalin-2(1H)-one derivatives and could be extended to phosphinyl-alkylated quinoxalin-2(1H)-one in a single step in moderate to excellent yields under mild conditions, as demonstrated by the preliminary antibacterial evaluation against Magnaporthe grisea for the first time. Mechanistic studies revealed that this transformation undergoes a cascade addition pathway controlled by a polar radical.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1707514.
- Supporting Information
-
References
- 1a Zeng X. Chem. Rev. 2013; 113: 6864
- 1b Romero RM, Woste TH, Muniz K. Chem. Asian J. 2014; 9: 972
- 1c Koike T, Akita M. Org. Chem. Front. 2016; 3: 1345
- 1d Yin G, Mu X, Liu G. Acc. Chem. Res. 2016; 49: 2413
- 1e Wu X, Wu S, Zhu C. Tetrahedron Lett. 2018; 59: 1328
- 1f Li Z.-L, Fang G.-Ch, Gu Q.-S, Liu X.-Y. Chem. Soc. Rev. 2020; 49: 32
- 2a Panchaud P, Renaud P. J. Org. Chem. 2004; 69: 3205
- 2b Dagousset G, Carboni A, Magnier E, Masson G. Org. Lett. 2014; 16: 4340
- 2c Kong W, Merino E, Nevado C. Angew. Chem. Int. Ed. 2014; 53: 5078
- 2d Wang F, Qi X, Liang Z, Chen P, Liu G. Angew. Chem. Int. Ed. 2014; 53: 1881
- 2e Wu Z, Ren R, Zhu C. Angew. Chem. Int. Ed. 2016; 55: 10821
- 2f Geng X, Lin F, Wang X, Jiao N. Org. Lett. 2017; 19: 4738
- 2g Bunescu A, Ha TM, Wang Q, Zhu J. Angew. Chem. Int. Ed. 2017; 56: 10555
- 2h Wang D, Wang F, Chen P, Lin Z, Liu G. Angew. Chem. Int. Ed. 2017; 56: 2054
- 2i Xu L, Chen J, Chu L. Org. Chem. Front. 2019; 6: 512
- 2j Xiong H, Ramkumar N, Chiou M.-F, Jian W, Li Y, Su J -H, Zhang X, Bao H. Nat. Commun. 2019; 10: 122
- 3a Fumagalli G, Rabet PT, Boyd S, Greaney MF. Angew. Chem. Int. Ed. 2015; 54: 11481
- 3b Lu M.-Z, Wang C -Q, Loh T.-P. Org. Lett. 2015; 17: 6110
- 3c Yuan YA, Lu DF, Chen YR, Xu H. Angew. Chem. Int. Ed. 2016; 55: 534
- 3d Fu N, Sauer GS, Saha A, Loo A, Lin S. Science 2017; 357: 575
- 3e Zhou H, Jian W, Qian B, Ye C, Li D, Zhou J, Bao H. Org. Lett. 2017; 19: 6120
- 3f Li H, Shen S.-J, Zhu C.-L, Xu H. J. Am. Chem. Soc. 2018; 140: 10619
- 3g Siu J, Parry J, Lin S. J. Am. Chem. Soc. 2019; 141: 2825
- 3h Wu D, Cui S.-S, Lin Y, Li L, Yu W. J. Org. Chem. 2019; 84: 10978
- 4a Zhang B, Studer A. Org. Lett. 2013; 15: 4548
- 4b Zhu L, Yu H, Xu Z, Jiang X, Lin L, Wang R. Org. Lett. 2014; 16: 1562
- 4c Zhu R, Buchwald SL. J. Am. Chem. Soc. 2015; 137: 8069
- 4d Sun X, Li X, Song S, Zhu Y, Liang Y.-F, Jiao N. J. Am. Chem. Soc. 2015; 137: 6059
- 4e Shen K, Wang Q. J. Am. Chem. Soc. 2017; 139: 13110
- 4f Li X, Chen P, Liu G. Sci. China Chem. 2019; 62: 1537
- 5a Organic Azides: Syntheses and Applications . Bräse S, Banert K. Wiley; Chichester: 2010
- 5b Deng DS, Liu P, Ji BM, Wang L, Fu WJ. Tetrahedron Lett. 2010; 51: 5567
- 5c Deng DS, Liu P, Ji BM, Fu WJ, Li L. Catal. Lett. 2010; 137: 163
- 5d Brase S, Gil C, Knepper K, Zimmermann V. Angew. Chem. Int. Ed. 2005; 44: 5188
- 6a Kumar R, Wiebe LI, Knaus EE. J. Med. Chem. 1993; 36: 2470
- 6b Yu W, Jiang L, Shen C, Zhang P. Drug Dev. Res. 2016; 77: 319
- 7a Matcha K, Narayan R, Antonchick AP. Angew. Chem. Int. Ed. 2013; 52: 7985
- 7b Li L, Gu Q, Wang N, Song P, Li Z.-L, Li X.-H, Wang F.-L, Liu X.-Y. Chem. Commun. 2017; 53: 4038
- 7c Li Z.-R, Wu D.-Q, Sun J, Shen J, Deng Q.-H. Asian J. Org. Chem. 2018; 7: 432
- 8 Wang M, Wu Z, Zhang B, Zhu C. Org. Chem. Front. 2018; 5: 1896
- 9 Liu Z, Liu Z.-Q. Org. Lett. 2017; 19: 5649
- 10 Chen J, Zhu S, Qin J, Chu L. Chem. Commun. 2019; 55: 2336
- 11 Lear JM, Buquoi JQ, Gu X, Pan K, Mustafaa DN, Nagib DA. Chem. Commun. 2019; 55: 8820
- 12a Liu R, Huang Z.-H, Murray MG, Guo X.-Y, Liu GJ. J. Med. Chem. 2011; 54: 5747
- 12b Hussain S, Parveen S, Hao X, Zhang S.-Z, Wang W, Qin X.-Y, Yang Y.-C, Chen X, Zhu S.-J, Zhu C.-J, Ma B. Eur. J. Med. Chem. 2014; 80: 383
- 13a Carrër A, Brion JD, Messaoudi S, Alami M. Org. Lett. 2013; 15: 5606
- 13b Deng DS, Kang GH, Ji BM, Li HL, Qu GR, Fan XS. Aust. J. Chem. 2013; 66: 1342
- 13c Gao M, Li Y, Xie L.-J, Chauvin R, Cui X.-L. Chem. Commun. 2016; 52: 2846
- 13d Li Y, Gao M, Wang L.-H, Cui X.-L. Org. Biomol. Chem. 2016; 14: 8428
- 13e Yin K, Zhang R.-H. Org. Lett. 2017; 19: 1530
- 13f Paul S, Ha JH, Park GE, Lee YR. Adv. Synth. Catal. 2017; 359: 1515
- 13g Yuan J.-W, Liu S.-N, Qu L.-B. Adv. Synth. Catal. 2017; 359: 4197
- 13h Gupta A, Deshmukh MS, Jain N. J. Org. Chem. 2017; 82: 4784
- 13i Zeng X.-B, Liu C.-L, Wang X.-Y, Zhang J.-L, Wang X.-Y, Hu Y.-F. Org. Biomol. Chem. 2017; 15: 8929
- 13j Deng DS, Guo H, Ji BM, Wang WZ, Ma LF, Luo F. New J. Chem. 2017; 41: 12611
- 13k Yang L, Gao P, Duan X.-H, Gu Y.-R, Guo L.-N. Org. Lett. 2018; 20: 1034
- 13l Fu J, Yuan J, Zhang Y, Xiao Y, Mao P, Diao X, Qu L. Org. Chem. Front. 2018; 5: 3382
- 13m Yuan J, Fu J, Yin J, Dong Z, Xiao Y, Mao P, Qu L. Org. Chem. Front. 2018; 5: 2820
- 13n Zheng D, Studer A. Org. Lett. 2019; 21: 325
- 14a Li Z, Song L, Li C. J. Am. Chem. Soc. 2013; 135: 4640
- 14b Li Z, Wang Z, Zhu L, Tan X, Li C. J. Am. Chem. Soc. 2014; 136: 16439
- 14c Li Z, García-Domínguez A, Nevado C. J. Am. Chem. Soc. 2015; 137: 11610
- 14d Li Z, García-Domínguez A, Nevado C. Angew. Chem. Int. Ed. 2016; 55: 6938
- 14e Li Z, Wang Q, Zhu J. Angew. Chem. Int. Ed. 2018; 57: 13288
- 14f Li Z, Torres-Ochoa RS, Wang Q, Zhu J. Nat. Commun. 2020; 11: 403
- 15a Liu Y.-L, Yin X.-P, Zhou J. Chin. J. Chem. 2018; 36: 321
- 15b Liu Y.-L, Mao X.-Y, Lin X.-T, Chen G.-S. Org. Chem. Front. 2018; 5: 2303
- 15c Mao X.-Y, Lin X.-T, Yang M, Chen GS, Liu Y.-L. Adv. Synth. Catal. 2018; 360: 3643
- 15d Liu y.-L, Lin X.-T. Adv. Synth. Catal. 2019; 361: 876
- 15e Luo J, Fang Y.-B, Mao X.-Y, Yang M, Zhao Y.-L, Liu Y.-L, Chen G.-S, Ji Y.-F. Adv. Synth. Catal. 2019; 361: 1408
- 15f Chen S.-J, Zhang J.-H, Yang M.-F, Liu F.-G, Xie Z.-P, Liu Y.-L, Lin W.-X, Wang D.-R, Li X.-R, Wang J.-H. Chem. Commun. 2019; 55: 3879
- 15g Wang L, Deng DS, Škoch K, Daniliuc CG, Kehr G, Erker G. Organometallics 2019; 38: 1897
- 15h Zhao Y, Liu X, Zheng L, Du Y, Shi X, Liu Y.-L, Yan Z, You J, Jiang Y. J. Org. Chem. 2020; 85: 912
- 15i Chen G.-S, Chen S.-J, Luo J, Mao X.-Y, Chan AS.-C, Sun RW.-Y, Liu Y.-L. Angew. Chem. Int. Ed. 2020; 59: 614
- 15j Luo J, Chen G.-S, Chen SJ, Liu YL. Sci. Bull. 2020; 65: 670
- 15k Chen G.-S, Lin X.-T, Liu Y.-L. Synlett 2020;
- 15l Zhu Z, Liu J, Dong S, Chen B, Wang Z, Tang R.-Y, Li Z. Asian J. Org. Chem. 2020; 9
- 15m Shao M, Liang H, Liu Y.-L, Qin W, Li Z. Asian J. Org. Chem. 2020; 9
- 16 During the preparation of our manuscript, a similar work was reported, see: Shen J, Xu J, Huang L, Zhu Q, Zhang P. Adv. Synth. Catal. 2020; 362: 230
- 17 See ref. 13l.
- 18 Buquoi J, Lear JM, Gu X, Nagib DA. ACS Catal. 2019; 9: 5330
- 19a Beckwith AL. J, Schiesser CH. Tetrahedron 1985; 41: 3925
- 19b Spellmeyer DC, Houk KN. J. Org. Chem. 1987; 52: 959
For selected reviews on difunctionalization of alkenes, see:
For selected examples on carboazidation reactions, see:
For selected examples on diazidation reactions, see:
For other related examples, see:
For selected reviews, see:
For selected examples, see: