Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2020; 52(21): 3272-3276
DOI: 10.1055/s-0040-1707809
DOI: 10.1055/s-0040-1707809
special topic
Zinc(II)-Catalyzed Synthesis of Secondary Amides from Ketones via Beckmann Rearrangement Using Hydroxylamine-O-sulfonic Acid in Aqueous Media
J.L.J. would like to thank the Science and Engineering Research Board of the Department of Science and Technology (DST-SERB; YSS/2015/000838) and the University Grants Commission (UGC, New Delhi; UGC-BSR Grant No. F.30-382/2017). S.V. expresses her gratitude to the Council of Scientific and Industrial Research (CSIR), New Delhi, India for a research fellowship.Further Information
Publication History
Received: 26 April 2020
Accepted after revision: 29 April 2020
Publication Date:
25 May 2020 (online)

Published as part of the Special Topic Recent Advances in Amide Bond Formation
Abstract
A zinc(II)-catalyzed single-step protocol for the Beckmann rearrangement using hydroxylamine-O-sulfonic acid (HOSA) as the nitrogen source in water was developed. This direct method efficiently produces secondary amides under open atmosphere in a pure form after basic aqueous workup. It is environmentally benign and operationally simple.
Key words
zinc(II) chloride - hydroxylamine-O-sulfonic acid (HOSA) - ketones - Beckmann rearrangement - amidesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1707809.
- Supporting Information
-
References
- 1a Krow GR. Tetrahedron 1981; 37: 1283
- 1b Palmer RJ. Encyclopedia of Polymer Science and Technology, 4th ed. Wiley; New York: 2001
- 1c Greenberg A, Breneman CM, Liebman JF. The Amide Linkage: Structural Significance in Chemistry, Biochemistry, and Materials Science. John Wiley & Sons; New York: 2003
- 1d Carey JS, Laffan D, Thomson C, Williams MT. Org. Biomol. Chem. 2006; 4: 2337
- 1e Tani K, Stoltz BM. Nature 2006; 441: 731
- 1f You K, Mao L, Yin D, Liu P, Luo H. Catal. Commun. 2008; 9: 1521
- 1g Pattabiraman VR, Bode JW. Nature 2011; 480: 471
- 1h Roughley SD, Jordan AM. J. Med. Chem. 2011; 54: 3451
- 1i Liu C, Szostak M. Chem. Eur. J. 2017; 23: 7157
- 1j Dander JE, Garg NK. ACS Catal. 2017; 7: 1413
- 1k Sui G, Xu D, Luo T, Guo H, Sheng G, Yin D, Ren L, Hao H, Zhou W. Bioorg. Med. Chem. Lett. 2020; 30: 126774
- 2a Wang C, Jiang X, Shi H, Lu J, Hu Y, Hu H. J. Org. Chem. 2003; 68: 4579
- 2b Ichino T, Arimoto H, Uemura D. Chem. Commun. 2006; 16: 1742
- 2c DeRosa TF. Amides. Advances in Synthetic Organic Chemistry and Methods Reported in US Patents. Elsevier; Amsterdam: 2006
- 2d Kumar R, Wadhwa D, Prakash O. Heterocycl. Commun. 2010; 16: 201
- 2e Saeki M, Toyota M. Tetrahedron Lett. 2010; 51: 4620
- 2f Zeng R, Fu C, Ma S. J. Am. Chem. Soc. 2012; 134: 9597
- 2g Kaiser D, Bauer A, Lemmerer M, Maulide N. Chem. Soc. Rev. 2018; 47: 7899
- 2h Sato T, Yoritate M, Tajima H, Chida N. Org. Biomol. Chem. 2018; 16: 3864
- 2i Zheng Q, Liu C.-F, Chen J, Rao G.-W. Adv. Synth. Catal. 2020; 362: 1406
- 3a El-Faham A, Albericio F. Chem. Rev. 2011; 111: 6557
- 3b Lanigan RM, Sheppard TD. Eur. J. Org. Chem. 2013; 7453
- 3c De Figueiredo RM, Suppo J.-S, Campagne J.-M. Chem. Rev. 2016; 116: 12029
- 3d Ojeda-Porras A, Gamba-Sánchez D. J. Org. Chem. 2016; 81: 11548
- 3e Treitler DS, Marriott AS, Chadwick J, Quirk E. Org. Process Res. Dev. 2019; 23: 2562
- 3f Nagaraaj P, Vijayakumar V. Org. Chem. Front. 2019; 6: 2570
- 4a Beckmann E. Ber. Dtsch. Chem. Ges. 1886; 19: 988
- 4b Blatt AH. Chem. Rev. 1933; 12: 215
- 4c Gawley RE. Org. React. 1988; 35: 1
- 4d Smith MB, March J. Advanced Organic Chemistry, 5th ed. Wiley; New York: 2001: 1415 ; and references cited therein
- 4e Chandrasekhar S. The Beckmann and Related Reactions. In Comprehensive Organic Synthesis II, Vol. 7. Knochel P, Molander GA. Elsevier; Amsterdam: 2014. Chap. 7.25, 770-800
- 4f Debnath P. Curr. Org. Synth. 2018; 15: 666
- 5a Arisawa M, Yamaguchi M. Org. Lett. 2001; 3: 311
- 5b Furuya Y, Ishihara K, Yamamoto H. J. Am. Chem. Soc. 2005; 127: 11240
- 5c Ramalingan C, Park Y.-T. J. Org. Chem. 2007; 72: 4536
- 5d Betti C, Landini D, Maia A, Pasi M. Synlett 2008; 908
- 5e Srivastava VP, Yadav AK, Yadav LD. S. Synlett 2014; 25: 665
- 5f Kiely-Collins HJ, Sechi I, Brennan PE, McLaughlin MG. Chem. Commun. 2018; 54: 654
- 5g Zhang W, Yang S, Lin Q, Cheng H, Liu J. J. Org. Chem. 2019; 84: 851
-
5h See also refs. 9–16
- 6a Olah GA, Fung AP. Synthesis 1979; 537
- 6b Sharghi H, Hosseini M. Synthesis 2002; 1057
- 6c Mahajan S, Sharma B, Kapoor KK. Tetrahedron Lett. 2015; 56: 1915
- 6d Hyodo K, Hasegawa G, Oishi N, Kuroda K, Uchida K. J. Org. Chem. 2018; 83: 13080
- 6e Jain PU, Samant SD. ChemistrySelect 2018; 3: 1967
- 6f Chandra D, Verma S, Pandey CB, Yadav AK, Kumar P, Tiwari B, Jat JL. Tetrahedron Lett. 2020; 61: 151822
- 7 Munnuri S, Verma S, Chandra D, Anugu RR, Falck JR, Jat JL. Synthesis 2019; 51: 3709
- 8a Wallace RG. Aldrichimica Acta 1980; 13: 3
-
8b Erdik E., Saczewski J.; Hydroxylamine-O-sulfonic Acid, In Encyclopedia of Reagents for Organic Synthesis; John Wiley & Sons: New York, 2013; doi: 10.1002/047084289X.rh058.pub2
- 9 Mo X, Morgan TD. R, Ang HT, Hall DG. J. Am. Chem. Soc. 2018; 140: 5264
- 10 Hashimoto M, Obora Y, Sakaguchi S, Ishii Y. J. Org. Chem. 2008; 73: 2894
- 11 Schmidt B, Wolf F. J. Org. Chem. 2017; 82: 4386
- 12 An N, Tian B.-X, Pi H.-J, Eriksson LA, Deng W.-P. J. Org. Chem. 2013; 78: 4297
- 13 Schulz L, Enders M, Elsler B, Schollmeyer D, Dyballa KM, Franke R, Waldvogel SR. Angew. Chem. Int. Ed. 2017; 56: 4877
- 14 Singh H, Sen C, Sahoo T, Ghosh SC. Eur. J. Org. Chem. 2018; 34: 4748
- 15 Gao Y, Liu J, Li Z, Guo T, Xu S, Zhu H, Wei F, Chen S, Gebru H, Guo K. J. Org. Chem. 2018; 83: 2040
- 16 Steffel LR, Cashman TJ, Reutershan MH, Linton BR. J. Am. Chem. Soc. 2007; 129: 12956