Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2021; 32(05): 491-496
DOI: 10.1055/s-0040-1707818
DOI: 10.1055/s-0040-1707818
cluster
The Power of Transition Metals: An Unending Well-Spring of New Reactivity
Sequentially Catalyzed Three-Component Masuda–Suzuki–Sonogashira Synthesis of Fluorescent 2-Alkynyl-4-(7-azaindol-3-yl)pyrimidines: Three Palladium-Catalyzed Processes in a One-Pot Fashion
This work was supported by the Deutsche Forschungsgemeinschaft (GRK 2158) and the Fonds der Chemischen Industrie.Further Information
Publication History
Received: 31 March 2020
Accepted after revision: 08 May 2020
Publication Date:
29 May 2020 (online)
Abstract
The Masuda–Suzuki–Sonogashira sequence efficiently unites, in a one-pot fashion, a borylation, an arylation, and an alkynylation in the sense of a sequentially Pd-catalyzed three-component reaction to give fluorescent 2-alkynyl-4-(7-azaindol-3-yl) pyrimidines in yields of 24–83% (14 examples). Time-dependent density-functional theory calculations supported the electronic structure of the longest wavelength absorption bands, revealing that this novel consecutive three-component synthesis opens an efficient access to alkynyl meriolins, a novel class of potential inducers of apoptosis.
Key words
arylation - alkynylation - borylation - fluorescence - multicomponent reaction - meriolinsSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1707818.
- Supporting Information
-
References and Notes
- 1a Lessing T, Müller T. Appl. Sci. 2015; 5: 1803
- 1b Müller TJ. J. Top. Organomet. Chem. 2006; 19: 149
- 2 D’Souza DM, Müller TJ. J. Chem. Soc. Rev. 2007; 36: 1095
- 3a Baudoin O, Guénard D, Guéritte F. J. Org. Chem. 2000; 65: 9268
- 3b Baudoin O, Cesario M, Guénard D, Guéritte F. J. Org. Chem. 2002; 67: 1199
- 3c Penhoat M, Levacher V, Dupas G. J. Org. Chem. 2003; 68: 9517
- 3d Broutin PE, Čerňa I, Campaniello M, Leroux F, Colobert F. Org. Lett. 2004; 6: 4419
- 3e Abreu AS, Ferreira PM. T, Queiroz M.-JR. P, Ferreira IC. F. R, Calhelha RC, Estevinho LM. Eur. J. Org. Chem. 2005; 2951
- 3f Merkul E, Schäfer E, Müller TJ. J. Org. Biomol. Chem. 2011; 9: 3139
- 3g Tasch BO. A, Merkul E, Müller TJ. J. Eur. J. Org. Chem. 2011; 4532
- 3h Drießen D, Stuhldreier F, Frank A, Stark H, Wesselborg S, Stork B, Müller TJ. J. Bioorg. Med. Chem. 2019; 27: 3463
- 4a Tasch BO. A, Bensch L, Antovic D, Müller TJ. J. Org. Biomol. Chem. 2013; 11: 6113
- 4b Tasch BO. A, Antovic D, Merkul E, Müller TJ. J. Eur. J. Org. Chem. 2013; 4564
- 5a Bettayeb K, Tirado OM, Marionneau-Lambot S, Ferandin Y, Lozach O, Morris JC, Mateo-Lozano S, Drueckes P, Schachtele C, Kubbutat MH, Liger F, Marquet B, Joseph B, Echalier A, Endicott JA, Notario V, Meijer L. Cancer Res. 2007; 67: 8325
- 5b Echalier A, Bettayeb K, Ferandin Y, Lozach O, Clément M, Valette A, Liger F, Marquet B, Morris JC, Endicott JA, Joseph B, Meijer L. J. Med. Chem. 2008; 51: 737
- 5c Hammond M, Washburn DG, Hoang HT, Manns S, Frazee JS, Nakamura H, Patterson JR, Trizna W, Wu C, Azzarano LM, Nagilla R, Nord M, Trejo R, Head MS, Zhao B, Smallwood AM, Hightower K, Laping NJ, Schnackenberg CG, Thompson SK. Bioorg. Med. Chem. Lett. 2009; 19: 4441
- 5d Hong S, Lee S, Kim B, Lee H, Hong S.-S, Hong S. Bioorg. Med. Chem. Lett. 2010; 20: 7212
- 5e Jarry M, Lecointre C, Malleval C, Desrues L, Schouft M.-T, Lejoncour V, Liger F, Lyvinec G, Joseph B, Loaëc N, Meijer L, Honnorat J, Gandolfo P, Castel H. Neuro-Oncology (Cary, NC U. S.) 2014; 16: 1484
- 5f Singh U, Chashoo G, Khan SU, Mahajan P, Nargotra A, Mahajan G, Singh A, Sharma A, Mintoo MJ, Guru SK, Aruri H, Thatikonda T, Sahu P, Chibber P, Kumar V, Mir SA, Bharate SS, Madishetti S, Nandi U, Singh G, Mondhe DM, Bhushan S, Malik F, Mignani S, Vishwakarma RA, Singh PP. J. Med. Chem. 2017; 60: 9470
- 5g Zhang H.-C, Ye H, Conway BR, Derian CK, Addo MF, Kuo G.-H, Hecker LR, Croll DR, Li J, Westover L, Xu JZ, Look R, Demarest KT, Andrade-Gordon P, Damiano BP, Maryanoff BE. Bioorg. Med. Chem. Lett. 2004; 14: 3245
- 5h Wucherer-Plietker M, Merkul E, Müller TJ. J, Esdar C, Knöchel T, Heinrich T, Buchstaller H.-P, Greiner H, Dorsch D, Finsinger D, Calderini M, Bruge D, Grädler U. Bioorg. Med. Chem. Lett. 2016; 26: 3073
- 6a Niesobski P, Nau J, May L, Moubsit A.-E, Müller TJ. J. Dyes Pigm. 2020; 173
- 6b Niesobski P, Martínez IS, Kustosz S, Müller TJ. J. Eur. J. Org. Chem. 2019; 2019: 5214
- 6c Niesobski P, Klukas F, Berens H, Makhloufi G, Janiak C, Müller TJ. J. J. Org. Chem. 2018; 83: 4851
- 6d Götzinger AC, Theßeling FA, Hoppe C, Müller TJ. J. Org. Chem. 2016; 81: 10328
- 7a Langer P, Ehlers P, Reimann S, Erfle S, Villinger A. Synlett 2010; 1528
- 7b Akrawi OA, Hussain M, Langer P. Tetrahedron Lett. 2011; 52: 1093
- 7c Langer P, Hamdy A, Khaddour Z, Villinger A. Synlett 2015; 26: 2527
- 7d Reeves EK, Humke JN, Neufeldt SR. J. Org. Chem. 2019; 84: 11799
- 8a Sonogashira K, Tohda Y, Hagihara N. Tetrahedron Lett. 1975; 16: 4467
- 8b Negishi E, Anastasia L. Chem. Rev. 2003; 103: 1979
- 8c Chinchilla R, Nájera C. Chem. Rev. 2007; 107: 874
- 8d Reimann S, Ehlers P, Ohlendorf L, Langer P. Org. Biomol. Chem. 2017; 15: 1510
- 8e Malik I, Ahmed Z, Reimann S, Ali I, Villinger A, Langer P. Eur. J. Org. Chem. 2011; 2011: 2088
- 9 Huang S, Li R, Connolly PJ, Emanuel S, Middleton SA. Bioorg. Med. Chem. Lett. 2006; 16: 4818
- 10 Deng X, Mani NS. Org. Lett. 2006; 8: 269
- 11 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A. Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Gaussian, Inc., Wallingford, 2016.
- 12 Products 5a–m; General Procedure 7-azaindole 1a (398 mg, 1.00 mmol) and (Ph3P)4Pd (35.0 mg, 0.03 mmol) were placed in a dry screw-cap vessel equipped with a magnetic stirrer bar. The vessel was evacuated and refilled with argon three times, then anhyd 1,4-dioxane (5.00 mL) was added and the resulting mixture was degassed with argon for 10 min. Dry Et3N (1.40 mL, 10.0 mmol) and 4,4,5,5-tetramethyl-1,3,2-dioxaborolane (0.25 mL, 1.70 mmol) were successively added and the mixture was stirred in a preheated oil bath at 80 °C for 4 h then cooled to r.t. (water bath). Dry 1,2-dimethoxyethane (9.00 mL) and H2O (1.00 mL) were added, and the mixture was stirred at r.t. for 10 min. 2,4-Dichloropyrimidine (2; 149 mg, 1.00 mmol) and Cs2CO3 (823 mg, 2.50 mmol) were then added, and the mixture was stirred in a preheated oil bath at 80 °C for 18 h. When the Suzuki coupling was complete, the mixture was cooled to r.t. (water bath), and CuI (19.0 mg, 0.10 mmol) and the appropriate alkyne 4 (1.20 mmol) were added. The mixture was stirred at 45–80 °C for 18 h. When the Sonogashira coupling was complete (TLC), the mixture was cooled to r.t. (water bath), the solvents were removed in vacuo, and the residue was absorbed onto Celite. After purification by chromatography (silica gel, hexane–acetone), the product was sonicated in hexane–acetone (95:5) for further purification. The solvent was removed and the residue was dried in vacuo at 70 °C for 42 h. 1-[(4-Methylphenyl)sulfonyl]-3-[2-(phenylethynyl)pyrimidin-4-yl]-1H-pyrrolo[2,3-b]pyridine (5a) The final Sonogashira step was carried out at 80 °C for 18 h to give a yellow solid; yield: 310 mg (0.68 mmol, 68%); mp 200.3–202.7 °C; Rf = 0.48 (CH2Cl2–acetone, 6:4). IR (neat): 3379 (w), 3107 (w), 3090 (w), 3026 (w), 2918 (w), 2218 (w), 1593 (m), 1570 (s), 1555 (w), 1533 (s), 1491 (m), 1479 (w), 1425 (w), 1398 (s), 1381 (m), 1368 (s), 1335 (w), 1302 (m), 1262 (m), 1244 (m), 1186 (s), 1171 (s), 1155 (s), 1123 (w), 1075 (w), 1036 (m), 1017 (m), 999 (w), 961 (s), 918 (w), 883 (m), 866 (w), 849 (w), 837 (m), 822 (m), 802 (m), 775 (s), 756 (s), 732 (s), 675 (s), 654 (s), 633 (w) cm–1. 1H NMR (600 MHz, DMSO-d 6): δ = 2.35 (s, 3 H, CH3), 7.44–7.54 (m, 6 H, CHAr), 7.72 (d, 3 J HH = 6.7 Hz, 2 H, CHAr), 8.09 (d, 3 J HH = 8.5 Hz, 2 H, CHAr), 8.23 (d, 3 J HH = 5.4 Hz, 1 H, CHAr), 8.48 (dd, 3 J HH = 4.7 Hz, 4 J HH = 1.6 Hz, 1 H, CHAr), 8.85 (d, 3 J HH = 5.4 Hz, 1 H, CHAr), 8.88 (dd, 3 J HH = 8.0 Hz, 4 J HH = 1.6 Hz, 1 H, CHAr), 9.03 (s, 1 H, CHAr). 13C NMR (150 MHz, DMSO-d 6): δ = 21.1 (CH3), 86.2 (Cquat), 88.6 (Cquat), 115.5 (Cquat), 116.4 (CH), 119.8 (CH), 120.4 (Cquat), 120.5 (Cquat), 128.0 (CH), 129.0 (CH), 129.2 (CH), 130.1 (CH), 130.2 (CH), 131.7 (CH), 132.2 (CH), 134.0 (Cquat), 145.7 (CH), 146.2 (Cquat), 146.9 (Cquat), 152.0 (Cquat), 157.8 (CH), 159.8 (Cquat). EI MS: m/z (%) = 450 (21) [M+], 386 (100) [C21H14N4O2S+], 385 (36), 296 (11), 268 (12), 267 (19), 155 (13) [C7H7O2S+], 142 (14), 141 (12) [C9H5N2 +], 127 (11), 114 (14) [C9H6 +], 91 (90) [C7H7 +], 65 (14) [C5H5 +]. Anal. Calcd for C26H18N4O2S (450.5): C, 69.32; H, 4.03; N, 12.44; S, 7.12. Found: C, 69.11; H, 3.75; N, 12.19; S, 7.31.
For recent examples of the use of the Pd/Cu-Sonogashira catalyst system for sequentially catalyzed heterocycle synthesis in a one-pot fashion, see: