RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000084.xml
Synthesis 2020; 52(19): 2841-2856
DOI: 10.1055/s-0040-1707865
DOI: 10.1055/s-0040-1707865
paper
Solvent-Controlled Divergent Syntheses of Polycyclic N-Fused Heteroaromatics
National Research Foundation of Korea (NRF-2017R1A2A2A05069364, NRF-2018R1A6A1A03023718, and NRF-2020R1A2C2005961)Weitere Informationen
Publikationsverlauf
Received: 07. April 2020
Accepted after revision: 13. Mai 2020
Publikationsdatum:
16. Juni 2020 (online)

Abstract
Due to a growing interest in aza-fused polyaromatic systems among various sciences, enormous attention has been continuously paid to design and synthesize novel chemotypes of N-fused heterocycles. During the course of continued efforts in this line, it was found that divergent access to new polycyclic N-fused heteroaromatics was enabled by choice of reaction solvent. Described herein are solvent-controlled selective approaches to three novel N-fused azacycles, benzo-[d]imidazole-pyrrolo[1,2-a]pyrazine hybrids, under mild conditions. The plausible reaction mechanism for each class of compound is suggested as well.
Key words
polycyclic heteroaromatics - hybrid structure - benzo[d]-imidazole - pyrrolo[1,2-a]pyrazine - chemical space - diversity-oriented synthesis - atom-economy - fluorescenceSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1707865.
- Supporting Information
- CIF File
-
References
- 1a Kwong R, Lam ST, Lee CH. Patent US 20140332758 A1 20141113, 2014
- 1b Moon D.-H, Lee Y.-G. Patent WO 2018110930 A1 20180621, 2018
- 1c Damien J. Patent WO 2019115446 A1 20190620, 2019
- 2a Draper SM, Gregg DJ, Madathil R. J. Am. Chem. Soc. 2002; 124: 3486
- 2b Delcamp JH, Yella A, Holcombe TW, Nazeeruddin MK, Grätzel M. Angew. Chem. Int. Ed. 2013; 52: 376
- 2c Takase M, Narita T, Fujita W, Asano MS, Nishinaga T, Benten H, Yoza K, Müllen K. J. Am. Chem. Soc. 2013; 135: 8031
- 2d Tokimaru Y, Ito S, Nozaki K. Angew. Chem. Int. Ed. 2017; 56: 15560
- 2e Elbert SM, Reinschmidt M, Baumgärtner K, Rominger F, Mastalerz M. Eur. J. Org. Chem. 2018; 532
- 3a Kim I, Kim K. Org. Lett. 2010; 12: 2500
- 3b Lee JH, Kim I. J. Org. Chem. 2013; 78: 1283
- 3c Kim M, Jung Y, Kim I. J. Org. Chem. 2013; 78: 10395
- 3d Park S, Kwon DI, Lee J, Kim I. ACS Comb. Sci. 2015; 17: 459
- 3e Jung Y, Kim I. Org. Lett. 2015; 17: 4600
- 3f Jung Y, Kim I. Asian J. Org. Chem. 2016; 5: 147
- 3g Park S, Kim EH, Kim J, Kim SH, Kim I. Eur. J. Med. Chem. 2018; 144: 435
- 4a Park S, Jung Y, Kim I. Tetrahedron 2014; 70: 7534
- 4b Singh DK, Kim I. ARKIVOC 2019; (iii): 8
- 4c Kim J, Park M, Choi J, Singh DK, Kwon HJ, Kim SH, Kim I. Bioorg. Med. Chem. Lett. 2019; 29: 1350
- 4d Seo Y, Lee JW, Park S-h, Namkung W, Kim I. Eur. J. Med. Chem. 2020; 188: 111988
- 4e Dagar A, Seo Y, Namkung W, Kim I. Org. Biomol. Chem. 2020; 18: 3324
- 5 Bae GH, Kim S, Lee NK, Dagar A, Lee JH, Lee J, Kim I. RSC Adv. 2020; 10: 7265
- 6 Dagar A, Bae GH, Lee JH, Kim I. J. Org. Chem. 2019; 84: 6916
- 7 CCDC 1965113 contains the supplementary crystallographic data for compound 3a. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
- 8 CCDC 1965115 contains the supplementary crystallographic data for compound 4a. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
- 9 CCDC 1965116 contains the supplementary crystallographic data for compound 6a. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
- 10a Kim J, Golime G, Kum HY, Oh K. Asian J. Org. Chem. 2019; 8: 1674
- 10b Duan X, Liu X, Cuan X, Wang L, Liu K, Zhou H, Chen X, Li H, Wang J. J. Org. Chem. 2019; 84: 12366
- 10c Yang W.-W, Chen L.-L, Chen P, Ye Y.-F, Wang Y.-B, Zhang X. Chem. Commun. 2020; 56: 1183
- 11a Bindra AP, Elix JA. Tetrahedron 1969; 25: 3789
- 11b Perumal S, Mariappan S, Selvaraj S. ARKIVOC 2004; (viii): 46
- 11c Cano NH, Uranga JG, Nardi M, Procopio A, Wunderlin DA, Santiago AN. Beilstein J. Org. Chem. 2016; 12: 2410
- 11d Senapak W, Saeeng R, Jaratjarronphong J, Promarak V, Sirion U. Tetrahedron 2019; 75: 3543
- 12a Miller RA, Humphrey GR. Tetrahedron Lett. 1996; 37: 3429
- 12b Sharma AS, Kaur H. ChemistrySelect 2017; 2: 10112
- 12c Li S, Zhu B, Lee R, Qiao B, Jiang Z. Org. Chem. Front. 2018; 5: 380
- 12d Yu H, Zhao Q, Wei Z, Wu Z, Li Q, Han S, Wei Y. Chem. Commun. 2019; 55: 7840
- 12e Ehudin MA, Quist DA, Karlin KD. J. Am. Chem. Soc. 2019; 141: 12558
For recent examples, see:
For some recent metal-catalyzed allylic or benzylic oxidations, see: