RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000083.xml
Synlett 2020; 31(16): 1587-1592
DOI: 10.1055/s-0040-1707909
DOI: 10.1055/s-0040-1707909
letter
DBU-Catalyzed Rearrangement of Secondary Propargylic Alcohols: An Efficient and Cost-Effective Route to Chalcone Derivatives
Financial support from CSIR New Delhi [Grant No: 02(0270)/16/EMR-II] is most gratefully acknowledged.Weitere Informationen
Publikationsverlauf
Received: 06. Mai 2020
Accepted after revision: 22. Juni 2020
Publikationsdatum:
24. Juli 2020 (online)
Abstract
A 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU)-catalyzed rearrangement of diarylated secondary propargylic alcohols to give α,β-unsaturated carbonyl compounds has been developed. The typical 1,3-transposition of oxy functionality, characteristic of Mayer–Schuster rearrangements, is not observed in this case. A broad substrate scope, functional-group tolerance, operational simplicity, complete atom economy, and excellent yields are among the prominent features of the reaction. Additionally, the photophysical properties and crystal-structure-packing behavior of selected compounds were investigated and found to be of interest.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1707909.
- Supporting Information
- CIF File
-
References and Notes
- 1 For a review, see: Zhuang C, Zhang W, Sheng C, Zhang W, Xing C, Miao Z. Chem. Rev. 2017; 117: 7762
- 2a Salum LB, Altei WF, Chiaradia LD, Cordeiro MN. S, Canevarolo RR, Melo CP. S, Winter E, Mattei B, Daghestani HN, Santos-Silva MC, Creczynski-Pasa TB, Yunes RA, Yunes JA, Andricopulo AD, Day BW, Nunes RJ, Vogt A. Eur. J. Med. Chem. 2013; 63: 501
- 2b Jung SK, Lee M.-H, Lim DY, Kim JE, Singh P, Lee S.-Y, Jeong C.-H, Lim T.-G, Chen H, Chi Y.-I, Kumar-Kundu J, Lee N.-H, Lee CL, Cho Y.-Y, Bode AM. Lee K. W, Dong Z. J. Biol. Chem. 2014; 289: 35839
- 2c Inamori Y, Baba K, Tsujibo H, Taniguchi M, Nakata K, Kozawa M. Chem. Pharm. Bull. 1991; 39: 1604
- 2d Yadav N, Dixit SK, Bhattacharya A, Mishra LC, Sharma M, Awasthi SK, Bhasin VK. Chem. Biol. Drug Des. 2012; 80: 340
- 2e Liu Z, Tang L, Zou P, Zhang Y, Wang Z, Fang Q, Jiang L, Chen G, Xu Z, Zhang H, Liang G. Eur. J. Med. Chem. 2014; 74: 671
- 2f Wan Z, Hu D, Li P, Xie D, Gan X. Molecules 2015; 20: 11861
- 2g Wu J.-H, Wang X.-H, Yi Y.-H, Lee K.-H. Bioorg. Med. Chem. Lett. 2003; 13: 1813
- 2h Palmeira de Mello MV, de Azevedo Abrahim-Vieira B, Souza Domingos TF, Barbosa de Jesus J, Corrêa de Sousa AC, Rangel Rodrigues C, Teles de Souza AM. Eur. J. Med. Chem. 2018; 150: 920
- 2i Li Y.-S, Matsunaga K, Kato R, Ohizumi Y. J. Nat. Prod. 2001; 64: 806
- 3 Oh K, Lee JH, Curtis-Long MJ, Cho JK, Kim JY, Lee WS, Park KH. Food Chem. 2010; 121: 940
- 4a Corriu RJ. P, Moreau JJ. E, Pataud-sat M. J. Org. Chem. 1990; 55: 2878
- 4b Luo Q, Huang R, Xiao Q, Yao Y, Lin J, Yan S.-J. J. Org. Chem. 2019; 84: 1999
- 4c Song Z, Huang X, Yi W, Zhang W. Org. Lett. 2016; 18: 5640
- 4d Chen G, Wang Z, Zhang X, Fan X. J. Org. Chem. 2017; 82: 11230
- 5a Dodson RM, Seyler JK. J. Org. Chem. 1951; 16: 461
- 5b Barthakur MG, Borthakur M, Devi P, Saikia CJ, Saikia A, Bora U, Chetia A, Boruah RC. Synlett 2007; 223
- 5c Konno K, Hashimoto K, Shirahama H, Matsumoto T. Tetrahedron Lett. 1986; 27: 3865
- 6a Zhu Y, Li C, Zhang J, She M, Sun W, Wan K, Wang Y, Yin B, Liu P, Li J. Org. Lett. 2015; 17: 3872
- 6b Guchhait SK, Hura N, Shah AP. J. Org. Chem. 2017; 82: 2745
- 6c Rajaguru K, Suresh R, Mariappan A, Muthusubramanian S, Bhuvanesh N. Org. Lett. 2014; 16: 744
- 7a Zhang X, Kang J, Niu P, Wu J, Yu W, Chang J. J. Org. Chem. 2014; 79: 10170
- 7b Ding Y, Zhang T, Chen Q.-Y, Zhu C. Org. Lett. 2016; 18: 4206
- 8a Zhang Y, Li X, Li J, Chen J, Meng X, Zhao M, Chen B. Org. Lett. 2012; 14: 26
- 8b Wan J.-P, Cao S, Liu Y. J. Org. Chem. 2015; 80: 9028
- 9a Qin S, Zheng Y, Zhang F.-G, Ma J.-A. Org. Lett. 2017; 19: 3406
- 9b Yusuf M, Jain P. Arabian J. Chem. 2014; 7: 553
- 10a Tang S, He J, Sun Y, He L, She X. Org. Lett. 2009; 11: 3982
- 10b Voskiene A, Mickevičius V. Chem. Heterocycl. Compd. (Engl. Transl.) 2009; 45: 1485
- 11 Nielsen AT, Houlihan WJ. Org. React. (N. Y.) 2011; 16: 1−438
- 12a Bestmann HJ, Arnason B. Chem. Ber. 1962; 95: 1513
- 12b Ramirez F, Dershowitz S. J. Org. Chem. 1957; 22: 41
- 13 Kumar A, Sharma S, Tripathi VD, Srivastava S. Tetrahedron 2010; 66: 9445
- 14 Shotter RG, Johnston KM, Jones JF. Tetrahedron 1978; 34: 741
- 15a Miyaura N, Suzuki A. J. Chem. Soc., Chem. Commun. 1979; 866
- 15b Haddach M, McCarthy JR. Tetrahedron Lett. 1999; 40: 3109
- 16a Heck RF, Nolley JP. J. Org. Chem. 1972; 37: 2320
- 16b Bianco A, Cavarischia C, Farina A, Guiso M, Marra C. Tetrahedron Lett. 2003; 44: 9107
- 17a Barabanov II, Fedenok LG, Polyakov NE, Shvartsberg MS. Russ. Chem. Bull. 2001; 50: 1663
- 17b Ishikawa T, Mizuta T, Hagiwara K, Aikawa T, Kudo T, Saito S. J. Org. Chem. 2003; 68: 3702
- 17c Ding Z.-C, Yang Y, Cai S.-N, Wen J.-J, Zhan Z.-P. Chem. Lett. 2016; 45: 925
- 18a Meyer KH, Schuster K. Ber. Dtsch. Chem. Ges. 1922; 55: 819
- 18b Swaminathan S, Narayan KV. Chem. Rev. 1971; 71: 429
- 18c Engel DA, Dudley GB. Org. Biomol. Chem. 2009; 7: 4149
- 19a Cadierno V, Garcίa-Garrido SE, Gimeno J. Adv. Synth. Catal. 2006; 348: 101
- 19b Lee SI, Baek JY, Sim SH, Chung YK. Synthesis 2007; 2107
- 19c Egi M, Yamaguchi Y, Fujiwara N, Akai S. Org. Lett. 2008; 10: 1867
- 19d Sugawara Y, Yamada W, Yoshida S, Ikeno T, Yamada T. J. Am. Chem. Soc. 2007; 129: 12902
- 20a Yu M, Li G, Wang S, Zhang L. Adv. Synth. Catal. 2007; 349: 871
- 20b Yu M, Zhang G, Zhang L. Org. Lett. 2007; 9: 2147
- 21a Savarimuthu SA, Prakash DG. L, Thomas SA, Gandhi T, Bera MK. Org. Biomol. Chem. 2020; 18: 3552
- 21b Yamabe H, Mizuno A, Kusama H, Iwasawa N. J. Am. Chem. Soc. 2005; 127: 3248
- 22 CCDC 1998081 and 1998036 contain the supplementary crystallographic data for compounds 2s and 2u, respectively. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
- 23a Braun RU, Ansorge M, Müller TJ. J. Chem. Eur. J. 2006; 12: 9081
- 23b Yoshizawa K, Shioiri T. Tetrahedron Lett. 2006; 47: 4943
- 24a Nanda J, Biswas A, Adhikari B, Banerjee A. Angew. Chem. Int. Ed. 2013; 52: 5041
- 24b Nanda J, Biswas A, Banerjee A. Soft Matter 2013; 9: 4198
- 25 Li Y, Lei Y, Dong L, Zhang L, Zhi J, Shi J, Tong B, Dong Y. Chem. Eur. J. 2019; 25: 573
- 26 Zhang Y, Liang C, Jiang S. New J. Chem. 2017; 41: 8644
- 27 Chalcones 2a–u; General Procedure DBU (10 mol%) was added to a solution of the appropriate propargylic alcohol 1 (1.0 equiv) in dry MeCN (0.2 M) in a sealed tube, and the solution was mixed well by manual shaking. N2 gas was flashed into the tube, and the cap was quickly closed. The sealed tube was placed in an oil bath at 80 °C, and the mixture was stirred for 18 h until the substrate was completely consumed (TLC). The mixture was then allowed to cool to r.t. and the reaction was quenched with H2O (10 mL). The product was extracted with Et2O (3 × 20 mL), and the combined organic layers were washed with brine (10 mL), dried (Na2SO4), and concentrated under reduced pressure. The crude product was purified by column chromatography [silica gel (100–200 mesh), PE–EtOAc (10:1)]. (2E)-1,3-Diphenylprop-2-en-1-one (2a) White solid; yield: 43.2 mg (86%); mp 54–56 °C. IR (ATR): 3059 (=CH), 1658 (C=O), 1598 (C=C) cm–1. 1H NMR (400 MHz, CDCl3): δ =8.02 (d, J = 8.0 Hz, 2 H), 7.81 (d, J = 16.0 Hz, 1 H), 7.63 (dd, J = 8.0, 4.0 Hz, 2 H), 7.59–7.48 (m, 4 H), 7.42–7.40 (m, 3 H). 13C NMR (100 MHz, CDCl3): δ = 190.6, 144.9, 138.2, 134.9, 132.9, 130.6, 129.0, 128.7, 128.6, 128.5, 122.2.
For a review see: