RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000084.xml
Synthesis 2020; 52(12): 1841-1846
DOI: 10.1055/s-0040-1707996
DOI: 10.1055/s-0040-1707996
paper
Unexpected Iodine-Promoted Aerobic Oxidation of α-Cyano-δ-keto Esters: A Facile Synthesis of α,δ-Dicarbonyl Esters
This work was supported by the Introduction of Talent Research Start-up Fund of Anhui Polytechnic University (2018YQQ015) and Natural Science Foundation for Universities of Anhui Province (KJ2019ZD14).Weitere Informationen
Publikationsverlauf
Received: 04. Januar 2020
Accepted after revision: 25. Februar 2020
Publikationsdatum:
16. März 2020 (online)
Abstract
An efficient and green method for the synthesis of various α,δ-dicarbonyl esters has been developed via a conjugate addition of ethyl cyanoacetates to chalcones and subsequent iodine-promoted aerobic oxidation. The present protocol features mild reaction conditions, high efficiency, easily available starting materials, and broad substrate scope.
Key words
cyanoacetates - α,δ-dicarbonyl esters - molecular iodine - aerobic oxidation - two-step synthesisSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1707996.
- Supporting Information
-
References
- 1a Geraghty NW. A, Morris NM. Synthesis 1989; 603
- 1b Paterson I, Xuan M, Dalby SM. Angew. Chem. Int. Ed. 2014; 53: 7286
- 2a Ferreira VF, de Souza MC. B. V, Cunha AC, Pereira LO. R, Ferreira ML. G. Org. Prep. Proced. Int. 2001; 33: 411
- 2b Fuchs PJ. W, Zeitler K. J. Org. Chem. 2017; 82: 7796
- 3a Rao HS. P, Jothilingam SJ. J. Org. Chem. 2003; 68: 5392
- 3b Khaghaninejad S, Heravi MM. Adv. Heterocycl. Chem. 2014; 111: 95
- 4 Chan C.-K, Chan Y.-L, Tsai Y.-L, Chang M.-Y. J. Org. Chem. 2016; 81: 8112
- 5 Mortensen DS, Rodríguez AL, Carlson KE, Sun J, Katzenellenbogen BS, Katzenellenbogen AJ. J. Med. Chem. 2001; 44: 3838
- 6a Zhang J, Xing C, Tiwari B, Chi YR. J. Am. Chem. Soc. 2013; 135: 8113
- 6b Wilde MM. D, Gravel M. Angew. Chem. Int. Ed. 2013; 52: 12651
- 6c Yang KS, Nibbs AE, Türkmen YE, Rawal VH. J. Am. Chem. Soc. 2013; 135: 16050
- 6d Yetra SR, Patra A, Biju AT. Synthesis 2015; 47: 1357
- 7a Xue S, Li L.-Z, Liu Y.-K, Guo Q.-X. J. Org. Chem. 2006; 71: 215
- 7b Voituriez A, Zimmer LE, Charette AB. J. Org. Chem. 2010; 75: 1244
- 8a Yasuda M, Tsuji S, Shigeyoshi Y, Baba A. J. Am. Chem. Soc. 2002; 124: 7440
- 8b Liu C, Deng Y, Wang J, Yang Y, Tang S, Lei A. Angew. Chem. Int. Ed. 2011; 50: 7337
- 9a Avetta CT. Jr, Konkol LC, Taylor CN, Dugan KC, Stern CL, Thomson RJ. Org. Lett. 2008; 10: 5621
- 9b Clift MD, Thomson RJ. J. Am. Chem. Soc. 2009; 131: 14579
- 9c Xie J, Huang Z.-Z. Chem. Commun. 2010; 46: 1947
- 9d Casey BM, Flowers RA. J. Am. Chem. Soc. 2011; 133: 11492
- 10 Kim SH, Kim KH, Kim JN. Adv. Synth. Catal. 2011; 353: 3335
- 11a French AN, Bissmire S, Wirth T. Chem. Soc. Rev. 2004; 33: 354
- 11b Togo H, Iida S. Synlett 2006; 2159
- 12a Guo Y, Wang G, Wei L, Wan J.-P. J. Org. Chem. 2019; 84: 2984
- 12b Geng X, Wang C, Zhao P, Zhou Y, Wu Y.-D, Wu A.-X. Org. Lett. 2019; 21: 4939
- 12c Geng X, Wang C, Huang C, Zhao P, Zhou Y, Wu Y.-D, Wu A.-X. Org. Lett. 2019; 21: 7504
- 12d Ni B, He Y, Rong X, Niu T. Synlett 2019; 30: 1830
- 12e Gataullin RR, Mescheryakova ES, Sultanov RM, Fatykhov AA, Khalilov LM. Synthesis 2019; 51: 3485
- 13a Xu H, Li Y, Xing M, Jia J, Han L, Ye Q, Gao J. Chem. Lett. 2015; 44: 574
- 13b Xu H, Wang F.-J, Xin M, Zhang Z. Eur. J. Org. Chem. 2016; 925
- 13c Xu H, Liu H.-W, Chen K, Wang G.-W. J. Org. Chem. 2018; 83: 6035
- 14a Li Y, Xu H, Xing M, Huang F, Jia J, Gao J. Org. Lett. 2015; 17: 3690
- 14b Xu H, Liu H.-W, Lin H.-S, Wang G.-W. Chem. Commun. 2017; 53: 12477
- 15 Xu H, Zeng J.-C, Wang F.-J, Zhang Z. Synthesis 2017; 49: 1879
- 16 Xu H, Chen K, Liu H.-W, Wang G.-W. Org. Chem. Front. 2018; 5: 2864
- 17 Miao C.-B, Zhang M, Tian Z.-Y, Xi H.-T, Sun X.-Q, Yang H.-T. J. Org. Chem. 2011; 76: 9809
For selected reviews, see:
For selected examples, see: