Synlett 2020; 31(10): 991-996
DOI: 10.1055/s-0040-1708007
letter
© Georg Thieme Verlag Stuttgart · New York

Acetic Anhydride–Acetic Acid as a New Dehydrating Agent of Aldoximes for the Preparation of Nitriles: Preparation of 2-Cyanoglycals

Tommy F. Mabasa
a   Centre of Synthesis and Catalysis, University of Johannesburg, Auckland Park Campus, Auckland Park 2006, Johannesburg, South Africa
,
Jackie Mabasa
a   Centre of Synthesis and Catalysis, University of Johannesburg, Auckland Park Campus, Auckland Park 2006, Johannesburg, South Africa
,
Mthokozisi Simelane
b   Department of Biochemistry, University of Johannesburg, Auckland Park Campus, Auckland Park 2006, Johannesburg, South Africa   Email: hhkinfe@uj.ac.za
,
Banele Vatsha
a   Centre of Synthesis and Catalysis, University of Johannesburg, Auckland Park Campus, Auckland Park 2006, Johannesburg, South Africa
,
Banothile C.E. Makhubela
a   Centre of Synthesis and Catalysis, University of Johannesburg, Auckland Park Campus, Auckland Park 2006, Johannesburg, South Africa
,
Henok H. Kinfe
a   Centre of Synthesis and Catalysis, University of Johannesburg, Auckland Park Campus, Auckland Park 2006, Johannesburg, South Africa
› Author Affiliations
We acknowledge the South African Agency for Science and Technology Advancement (NRF 118552) for funding.
Further Information

Publication History

Received: 01 February 2020

Accepted after revision: 04 March 2020

Publication Date:
27 March 2020 (online)


Abstract

Glycals, 1,2-unsatrated carbohydrates, are versatile building blocks for the synthesis of various scaffolds. Despite their potential to serve as suitable precursors in diversity-oriented synthesis, 2-cyanoglycals are less explored in terms of their synthesis and derivatization. Herein, we report a combination of Ac2O and AcOH as new and efficient dehydrating agent of aldoximes for the synthesis of 2-cyanoglycals. In comparison to the conventional dehydrating system of Ac2O-base (such as NaOH, NaOAc and K2CO3), the current protocol provides superior yields and faster reaction rates. The scope and limitations of the dehydrating system are investigated.

Supporting Information

 
  • References and Notes

  • 1 Yu H, Richey RN, Miller WD, Xu J, May SA. J. Org. Chem. 2011; 76: 665 ; and references cited therein.
  • 2 Du B, Jiang X, Sun P. J. Org. Chem. 2013; 78: 2786
  • 3 Dai H.-X, Li G, Zhang X.-G, Stepan AF, Yu J.-Q. J. Am. Chem. Soc. 2013; 135: 7567
  • 4 Lee S, Lee H, Tan K. J. Am. Chem. Soc. 2013; 135: 18778
  • 5 Tang R.-Y, Li G, Yu J.-Q. Nature 2014; 507: 215
  • 6 Yang G, Lindovska P, Zhu D, Kim J, Wang P, Tang RY, Movassaghi M, Yu J.-Q. J. Am. Chem. Soc. 2014; 136: 10807
  • 7 Bera M, Modak A, Patra T, Maji A, Maiti D. Org. Lett. 2014; 16: 5760
  • 8 Deng Y, Yu I.-Q. Angew. Chem. Int. Ed. 2015; 54: 888
  • 9 Bera M, Maji A, Sahoo SK, Maiti D. Angew. Chem. Int. Ed. 2015; 54: 8515
  • 10 Li S, Ji H, Cai L, Li G. Chem. Sci. 2015; 6: 5595
  • 11 Sandmeyer T. Ber. Dtsch. Chem. Ges. 1884; 17: 1633
    • 12a Ushkov AV, Grushin VV. J. Am. Chem. Soc. 2011; 133: 10999
    • 12b Yeung PY, So CM, Lau CP, Kwong FY. Org. Lett. 2011; 13: 648
    • 12c Coombs JR, Fraunhoffer KJ, Simmons EM, Stevens JM, Wisniewski SR, Yu M. J. Org. Chem. 2017; 82: 7040
    • 12d Cohen DT, Buchwald SL. Org. Lett. 2015; 17: 202
    • 12e Zhang X, Xia A, Chen H, Liu Y. Org. Lett. 2017; 19: 2118
    • 12f Tu Y, Zhang Y, Xu S, Zhang Z, Xie X. Synlett 2014; 25: 2938
    • 12g Grossman O, Gelman D. Org. Lett. 2006; 8: 1189
    • 12h Weissman SA, Zewge D, Chen C. J. Org. Chem. 2005; 70: 1508
    • 12i Qi C, Hu X, He H. Synlett 2016; 27: 1979
    • 12j Chatterjee T, Dey R, Ranu BC. J. Org. Chem. 2014; 79: 5875
    • 12k Yu H, Richey RN, Miller WD, Xu J, May SA. J. Org. Chem. 2011; 76: 665
    • 12l Littke A, Soumeillant M, Kaltenbach RF. III, Cherney RJ, Tarby CM, Kiau S. Org. Lett. 2007; 9: 1711
    • 12m Zanon J, Klapars A, Buchwald SL. J. Am. Chem. Soc. 2003; 125: 2890
    • 12n Cheng Y.-n, Duan Z, Li T, Wu Y. Synlett 2007; 543
    • 12o Gan Y, Wang G, Xie X, Liu Y. J. Org. Chem. 2018; 83: 14036
    • 12p Takise R, Itami K, Yamaguchi J. Org. Lett. 2016; 18: 4428
    • 12q Heravi MM, Panahi F, Iranpoor N. Org. Lett. 2018; 20: 2753
  • 13 Yang SH, Chang S. Org. Lett. 2001; 3: 4209
  • 14 Li D, Shi F, Guo S, Deng Y. Tetrahedron Lett. 2005; 46: 671
  • 15 Yadav LD. S, Srivastava VP, Patel R. Tetrahedron Lett. 2009; 50: 5532
  • 16 Kim HS, Kim SH, Kim JN. Tetrahedron Lett. 2009; 50: 1717
  • 17 Enthaler S, Weidauer M, Schröder F. Tetrahedron Lett. 2012; 53: 882
  • 18 Ma X.-Y, He Y, Lu T.-T, Lu M. Tetrahedron 2013; 69: 2560
  • 19 Ghosh P, Subba R. Tetrahedron Lett. 2013; 54: 4885
  • 20 Ghosh P, Saha B, Pariyar GC, Tamang A, Subba R. Tetrahedron Lett. 2016; 57: 3618
  • 21 Leggio A, Belsito EL, Gallo S, Liguori A. Tetrahedron Lett. 2017; 58: 1512
    • 22a Hauser CR, Jordan E. J. Am. Chem. Soc. 1935; 57: 2450
    • 22b Mowry DT, Morner RR. J. Am. Chem. Soc. 1947; 69: 1831
    • 22c Browne MF, Shriner RL. J. Org. Chem. 1957; 22: 1320
    • 22d Anderson HJ. Can. J. Chem. 1959; 37: 2053
    • 22e Anderson HJ. Can. J. Chem. 1968; 46: 798
    • 22f Song Y, Shen D, Zhang Q, Chen B, Xu G. Tetrahedron Lett. 2014; 55: 639
  • 23 Moshapo PT, Mokela S, Mmutlane EM, Mampa RM, Kinfe HH. Org. Biomol. Chem. 2016; 14: 5627
  • 24 Kinfe HH. Org. Biomol. Chem. 2019; 17: 4153
  • 25 Malinowski M, Tran TV, de Robichon M, Lubin-Germain N, Ferry A. Adv. Synth. Catal. 2020; 362: 1
  • 26 Hall RH, Jordaan A. J. Chem. Soc., Perkin Trans. 1 1973; 1059
  • 27 CCDC 1969200 (2d) and 1969201 (3) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 28 Typical procedure: A solution of pre-prepared aldoxime 1a (100 mg, 0.218 mmol) in AcOH/Ac2O (1:1.75, 2 mL) in a 10 mL round-bottom flask fitted with a condenser was heated at 110 °C for 4 h under a nitrogen atmosphere. The reaction mixture was then allowed to cool to room temperature and 15% aq. NaOH was added until the solution became slightly basic. The resultant mixture was extracted with ethyl acetate and the combined organic phases were washed successively with saturated bicarbonate, brine and water, dried over MgSO4 and concentrated to dryness. The residue product was purified by column chromatography on silica gel using a mixture of ethyl acetate/hexane (9:1) as eluent to provide 2-cyanoglucal 2a in 72% yield. Compound 2a: Yield: 72%; colorless oil. IR (neat): 2214.3 cm–1 (C≡N). HRMS: m/z [M + Na]+ calcd: 441.1940; found: 441.1835. 1H NMR (CDCl3, 400 MHz): δ = 7.40–7.23 (m, 15 H, Ar), 7.15 (s, 1 H, H1), 4.78 (d, J = 11.5 Hz, 1 H, -CH 1aPh), 4.70–4.55 (m, 3 H, -CH 2Ph and -CH 1bPh), 4.50 (s, 2 H, -CH 2Ph), 4.39 (q, J = 14.8 Hz, 1 H, H5), 4.14 (d, J = 4.8 Hz, 1 H, H3), 3.86 (t, J = 10.4 Hz, 1 H, H4), 3.77 (dd, J = 6.0, 11.0 Hz, 1 H, H6a), 3.68 (dd, J = 3.5, 14.5 Hz, 1 H, H6b). 13C NMR (100 MHz, CDCl3): δ = 157.0 (C1), 137.5, 137.2, 137.1, 128.6, 128.5, 128.4, 128.2, 128.1, 128.06, 128.0, 127.9, 127.8, 127.7 (Ar), 117.9 (C2), 89.1 (CCN), 77.9 (C5), 73.5, 73.1, 72.6 (CH2Ph×3), 71.9 (C3 and C4), 67.5 (C6).
  • 29 Booma C, Balasubramanian KK. J. Chem. Soc., Perkin Trans. 1 1993; 393