RSS-Feed abonnieren
DOI: 10.1055/s-0040-1710016
Haematological Effects of Intermittent Pneumatic Compression for Deep Vein Thrombosis Prophylaxis
Publikationsverlauf
03. Februar 2020
25. März 2020
Publikationsdatum:
02. Mai 2020 (online)
Abstract
Intermittent pneumatic compression (IPC) is a widely used and recommended method to prevent deep vein thrombosis. While the haemodynamic effects of IPC are well understood, the objective of this systematic review was to analyse the evidence for additional haematological changes. Forty-eight studies were identified where the haematological effects of IPC were measured. The many differences between the studies prevented meta-analysis, but there was a significant amount of evidence that global fibrinolytic activity was increased by IPC, and that levels of D-dimer and tissue factor pathway inhibitor in the blood also increased. There was less consistent evidence for changes in tissue plasminogen activator, plasminogen activator inhibitor and other fibrinolytic parameters. The evidence for changes in pro-coagulant factors and many measures of platelet activation was weak, but there was evidence for increases in prostacyclin. There is sufficient evidence to conclude that IPC does produce haematological changes, but not enough data to clarify the detail of those changes or to determine if it is mediated more by direct compression of the blood vessels, or by the flow changes.
-
References
- 1 Morris RJ. Intermittent pneumatic compression - systems and applications. J Med Eng Technol 2008; 32 (03) 179-188
- 2 Guyatt GH, Akl EA, Crowther M, Gutterman DD, Schuunemann HJ. Executive summary: Antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 2012; 141: 7S-47S
- 3 National Institute for Health and Care Excellence. Venous Thromboembolism in over 16s: Reducing the Risk of Hospital-Acquired Deep Vein Thrombosis or Pulmonary Embolism: NICE Guideline [NG89]. London: National Institute for Health and Care Excellence; 2018
- 4 Vanek VW. Meta-analysis of effectiveness of intermittent pneumatic compression devices with a comparison of thigh-high to knee-high sleeves. Am Surg 1998; 64 (11) 1050-1058
- 5 Morris RJ, Woodcock JP. Evidence-based compression: prevention of stasis and deep vein thrombosis. Ann Surg 2004; 239 (02) 162-171
- 6 Allenby F, Boardman L, Pflug JJ, Calnan JS. Effects of external pneumatic intermittent compression on fibrinolysis in man. Lancet 1973; 2 (7843): 1412-1414
- 7 Allenby F, Boardman L, Calnan JS. Proceedings: intermittent compression and fibrinolysis. Br J Surg 1974; 61 (04) 319
- 8 Knight MT, Dawson R. Effect of intermittent compression of the arms on deep venous thrombosis in the legs. Lancet 1976; 2 (7998): 1265-1268
- 9 O'Brien TE, Woodford M, Irving MH. The effect of intermittent compression of the calf on the fibrinolytic responses in the blood during a surgical operation. Surg Gynecol Obstet 1979; 149 (03) 380-384
- 10 Tarnay TJ, Rohr PR, Davidson AG, Stevenson MM, Byars EF, Hopkins GR. Pneumatic calf compression, fibrinolysis, and the prevention of deep venous thrombosis. Surgery 1980; 88 (04) 489-496
- 11 de Boer AC, Turpie AGG, Butt R, Genton E. The contribution of increased fibrinolysis induced by intermittent pneumatic compression of the legs in the prevention of deep vein thrombosis. Thromb Haemost 1981; 46: 191
- 12 Ljungnér H, Bergqvist D, Nilsson IM. Effect of intermittent pneumatic and graduated static compression on factor VIII and the fibrinolytic system. Acta Chir Scand 1981; 147 (08) 657-661
- 13 Caprini JA, Chucker JL, Zuckerman L, Vagher JP, Franck CA, Cullen JE. Thrombosis prophylaxis using external compression. Surg Gynecol Obstet 1983; 156 (05) 599-604
- 14 Haas S, Stemberger A, Altenkämper H. , et al. 383. Einfluß der intermittierenden Kompression und von körperlichem Training auf verschiedene Parameter der Blutgerinnung und Fibrinolyse. Langenbecks Arch Chir 1983; 361: 920
- 15 Altenkämper H, Haas S, Geißdörfer K, Blümel G. Einfluß der intermittierenden Kompression auf die fibrinolytische Aktivität der Venenwand bei Varikosispatienten. Phlebol u Proktol 1984; 13: 63-66
- 16 Köhler M. Vergleichende Untersuchung zur Auswirkung der intermittierenden, pneumatischen Kompression und der Fahrradergometerbelastung auf die Hämostase. In: Brunner U, Schrey A. , eds. Die intermittierende Kompression. Zürich: H.U.F. Verlag; 1983: 112-115
- 17 Sinclair ME, Simpson P, Marshall FP, Lockyer JA. Effect of varying methods of upper limb occlusion on fibrinolytic activity in man. Br J Anaesth 1984; 56 (02) 175-177
- 18 Guyton DP, Khayat A, Schreiber H. Pneumatic compression stockings and prostaglandin synthesis - a pathway of fibrinolysis?. Crit Care Med 1985; 13: 266
- 19 Watanabe H. Postoperative deep venous thrombosis prevention with intermittent sequential compression [in Japanese]. Nippon Geka Gakkai Zasshi 1985; 86 (12) 1654-1663
- 20 Weitz J, Michelsen J, Gold K, Owen J, Carpenter D. Effects of intermittent pneumatic calf compression on postoperative thrombin and plasmin activity. Thromb Haemost 1986; 56 (02) 198-201
- 21 Guyton DP, Khayat A, Schreiber H, Husni EA. Endogenous plasminogen activator and venous flow: therapeutic implications. Crit Care Med 1987; 15 (02) 122-125
- 22 Salzman EW, McManama GP, Shapiro AH. , et al. Effect of optimization of hemodynamics on fibrinolytic activity and antithrombotic efficacy of external pneumatic calf compression. Ann Surg 1987; 206 (05) 636-641
- 23 Guyton DP, Khayat A, Husni EA, Schreiber H. Elevated levels of 6-keto-prostaglandin-F1a from a lower extremity during external pneumatic compression. Surg Gynecol Obstet 1988; 166 (04) 338-342
- 24 Inada K, Koike S, Shirai N, Matsumoto K, Hirose M. Effects of intermittent pneumatic leg compression for prevention of postoperative deep venous thrombosis with special reference to fibrinolytic activity. Am J Surg 1988; 155 (04) 602-605
- 25 Koike S. Study on postoperative deep venous thrombosis with reference to prevention [in Japanese]. Nippon Geka Gakkai Zasshi 1988; 89 (02) 270-281
- 26 Summaria L, Caprini JA, McMillan R. , et al. Relationship between postsurgical fibrinolytic parameters and deep vein thrombosis in surgical patients treated with compression devices. Am Surg 1988; 54 (03) 156-160
- 27 Cisek LJ, Walsh PC. Thromboembolic complications following radical retropubic prostatectomy. Influence of external sequential pneumatic compression devices. Urology 1993; 42 (04) 406-408
- 28 Gleysteen JJ, Bandyk DF, Hussey CV, Naftel DC. Perioperative coagulation changes with gastric bypass: association with venous thrombosis?. Obes Surg 1993; 3 (01) 7-14
- 29 Hoppensteadt DA, Jeske W, Fareed J, Bermes Jr EW. The role of tissue factor pathway inhibitor in the mediation of the antithrombotic actions of heparin and low-molecular-weight heparin. Blood Coagul Fibrinolysis 1995; 6 (Suppl. 01) S57-S64
- 30 Hoppensteadt DA, Jeske W, Fareed J, Nicolaides AN. Physical and pharmacologic manipulation of the vascular system as measured by the release of TFPI and other mediators of antithrombotic actions. Int Angiol 1996; 15 (01) 39-46
- 31 Jacobs DG, Piotrowski JJ, Hoppensteadt DA, Salvator AE, Fareed J. Hemodynamic and fibrinolytic consequences of intermittent pneumatic compression: preliminary results. J Trauma 1996; 40 (05) 710-716
- 32 Kessler CM, Hirsch DR, Jacobs H, MacDougall R, Goldhaber SZ. Intermittent pneumatic compression in chronic venous insufficiency favorably affects fibrinolytic potential and platelet activation. Blood Coagul Fibrinolysis 1996; 7 (04) 437-446
- 33 Christen Y, Wütschert R, Weimer D, de Moerloose P, Kruithof EK, Bounameaux H. Effects of intermittent pneumatic compression on venous haemodynamics and fibrinolytic activity. Blood Coagul Fibrinolysis 1997; 8 (03) 185-190
- 34 Comerota AJ, Chouhan V, Harada RN. , et al. The fibrinolytic effects of intermittent pneumatic compression: mechanism of enhanced fibrinolysis. Ann Surg 1997; 226 (03) 306-313
- 35 Kosir MA, Schmittinger L, Barno-Winarski L. , et al. Prospective double-arm study of fibrinolysis in surgical patients. J Surg Res 1998; 74 (01) 96-101
- 36 Chouhan VD, Comerota AJ, Sun L, Harada R, Gaughan JP, Rao AK. Inhibition of tissue factor pathway during intermittent pneumatic compression: a possible mechanism for antithrombotic effect. Arterioscler Thromb Vasc Biol 1999; 19 (11) 2812-2817
- 37 Labropoulos N, Stanley SK, Kang SS. , et al. The effects of intermittent pneumatic compression on systemic and local fibrinolysis. Vasc Surg 1999; 33: 211-218
- 38 Cahan MA, Hanna DJ, Wiley LA, Cox DK, Killewich LA. External pneumatic compression and fibrinolysis in abdominal surgery. J Vasc Surg 2000; 32 (03) 537-543
- 39 Nguyen NT, Owings JT, Gosselin R. , et al. Systemic coagulation and fibrinolysis after laparoscopic and open gastric bypass. Arch Surg 2001; 136 (08) 909-916
- 40 Killewich LA, Cahan MA, Hanna DJ. , et al. The effect of external pneumatic compression on regional fibrinolysis in a prospective randomized trial. J Vasc Surg 2002; 36 (05) 953-958
- 41 Macaulay W, Westrich G, Sharrock N. , et al. Effect of pneumatic compression on fibrinolysis after total hip arthroplasty. Clin Orthop Relat Res 2002; (399) 168-176
- 42 Murakami M, Wiley LA, Cindrick-Pounds L, Hunter GC, Uchida T, Killewich LA. External pneumatic compression does not increase urokinase plasminogen activator after abdominal surgery. J Vasc Surg 2002; 36 (05) 917-921
- 43 Okuda Y, Kitajima T, Egawa H. , et al. A combination of heparin and an intermittent pneumatic compression device may be more effective to prevent deep-vein thrombosis in the lower extremities after laparoscopic cholecystectomy. Surg Endosc 2002; 16 (05) 781-784
- 44 Kohro S, Yamakage M, Takahashi T, Ota K, Kondo M, Namiki A. Effects of intermittent pneumatic foot compression on blood coagulability and fibrinolysis assessed by a whole blood viscometer Sonoclot. J Anesth 2003; 17 (03) 208-210
- 45 Giddings JC, Morris RJ, Ralis HM, Jennings GM, Davies DA, Woodcock JP. Systemic haemostasis after intermittent pneumatic compression. Clues for the investigation of DVT prophylaxis and travellers thrombosis. Clin Lab Haematol 2004; 26 (04) 269-273
- 46 Kohro S, Yamakage M, Sato K, Sato JI, Namiki A. Intermittent pneumatic foot compression can activate blood fibrinolysis without changes in blood coagulability and platelet activation. Acta Anaesthesiol Scand 2005; 49 (05) 660-664
- 47 Morris RJ, Giddings JC, Ralis HM. , et al. The influence of inflation rate on the hematologic and hemodynamic effects of intermittent pneumatic calf compression for deep vein thrombosis prophylaxis. J Vasc Surg 2006; 44 (05) 1039-1045
- 48 Kim JY, Kwak YL, Jung WS, Lee DC, Choi JJ, Kwak HJ. The effect of SCD Response compression system on coagulation and fibrinolysis using thromboelastography in patients undergoing gastrectomy; a comparison with elastic stocking. Korean J Anesthesiol 2007; 53: S1-S6
- 49 Kiudelis M, Gerbutavicius R, Gerbutaviciene R. , et al. A combinative effect of low-molecular-weight heparin and intermittent pneumatic compression device for thrombosis prevention during laparoscopic fundoplication. Medicina (Kaunas) 2010; 46 (01) 18-23
- 50 Yukizawa Y, Inaba Y, Watanabe S. , et al. Association between venous thromboembolism and plasma levels of both soluble fibrin and plasminogen-activator inhibitor 1 in 170 patients undergoing total hip arthroplasty. Acta Orthop 2012; 83 (01) 14-21
- 51 Wang JP, Lin YD, Wang L. , et al. Effect of intermittent pneumatic compression on coagulation function and deep venous hemodynamics of lower limbs after rectal cancer resection [in Chinese]. Zhonghua Wei Chang Wai Ke Za Zhi 2013; 16 (08) 739-743
- 52 Reddick KL, Smrtka MP, Grotegut CA, James AH, Brancazio LR, Swamy GK. The effects of intermittent pneumatic compression during cesarean delivery on fibrinolysis. Am J Perinatol 2014; 31 (09) 735-740
- 53 Bito S, Miyata S, Migita K. , et al. Mechanical prophylaxis is a heparin-independent risk for anti-platelet factor 4/heparin antibody formation after orthopedic surgery. Blood 2016; 127 (08) 1036-1043
- 54 Conchonnet P, Mismetti P, Reynaud J. , et al. Fibrinolysis and elastic compression: no fibrinolytic effect of elastic compression in healthy volunteers. Blood Coagul Fibrinolysis 1994; 5 (06) 949-953
- 55 Chen AH, Frangos SG, Kilaru S, Sumpio BE. Intermittent pneumatic compression devices -- physiological mechanisms of action. Eur J Vasc Endovasc Surg 2001; 21 (05) 383-392
- 56 Klenerman L, Chakrabarti R, Mackie I, Brozovic M, Stirling Y. Changes in haemostatic system after application of a tourniquet. Lancet 1977; 1 (8019): 970-972
- 57 Petäjä J, Myllynen P, Myllylä G, Vahtera E. Fibrinolysis after application of a pneumatic tourniquet. Acta Chir Scand 1987; 153 (11-12): 647-651
- 58 Clarke RL, Orandi A, Cliffton EE. Induction of fibrinolysis by venous obstruction. Angiology 1960; 11: 367-370
- 59 Chakrabarti R, Bielawiec M, Evans JF, Fearnley GR. Methodological study and a recommended technique for determining the euglobulin lysis time. J Clin Pathol 1968; 21 (06) 698-701
- 60 Astrup T, Mullertz S. The fibrin plate method for estimating fibrinolytic activity. Arch Biochem Biophys 1952; 40 (02) 346-351
- 61 Coppe D, Wessinger SJ, Ransil BJ, Harris W, Salzman E. Sex differences in the platelet response to aspirin. Thromb Res 1981; 23 (1-2): 1-21
- 62 Todd AS. Fibrinolysis autographs. Nature 1958; 181 (4607): 495-496
- 63 Longstaff C. Measuring fibrinolysis: from research to routine diagnostic assays. J Thromb Haemost 2018; 16 (04) 652-662
- 64 Chapin JC, Hajjar KA. Fibrinolysis and the control of blood coagulation. Blood Rev 2015; 29 (01) 17-24
- 65 Pulivarthi S, Gurram MK. Effectiveness of d-dimer as a screening test for venous thromboembolism: an update. N Am J Med Sci 2014; 6 (10) 491-499
- 66 Ganter MT, Hofer CK. Coagulation monitoring: current techniques and clinical use of viscoelastic point-of-care coagulation devices. Anesth Analg 2008; 106 (05) 1366-1375
- 67 Krishnaswamy S. The transition of prothrombin to thrombin. J Thromb Haemost 2013; 11 (Suppl. 01) 265-276
- 68 Kamath S, Blann AD, Lip GY. Platelet activation: assessment and quantification. Eur Heart J 2001; 22 (17) 1561-1571
- 69 von Tempelhoff GF, Heilmann L, Hommel G, Pollow K. Impact of rheological variables in cancer. Semin Thromb Hemost 2003; 29 (05) 499-513
- 70 Krishnamurthy A, Belur PD, Subramanya SB. Methods available to assess therapeutic potential of fibrinolytic enzymes of microbial origin: a review. J Anal Sci Technol 2018; 9: 10
- 71 Holemans R. Increase in fibrinolytic activity by venous occlusion. J Appl Physiol 1963; 18: 1123-1129
- 72 Shaper AG, Marsh NA, Patel I, Kater F. Response of fibrinolytic activity to venous occlusion. BMJ 1975; 3 (5983): 571-573
- 73 Hong SY, Pyo SJ, Kim MH. , et al. Fibrinolytic response to standardized venous occlusion in different age groups. Korean J Intern Med 1989; 4 (01) 48-53
- 74 Dai G, Tsukurov O, Orkin RW, Abbott WM, Kamm RD, Gertler JP. An in vitro cell culture system to study the influence of external pneumatic compression on endothelial function. J Vasc Surg 2000; 32 (05) 977-987
- 75 Dai G, Tsukurov O, Chen M, Gertler JP, Kamm RD. Endothelial nitric oxide production during in vitro simulation of external limb compression. Am J Physiol Heart Circ Physiol 2002; 282 (06) H2066-H2075
- 76 Liu K, Chen LE, Seaber AV, Johnson GW, Urbaniak JR. Intermittent pneumatic compression of legs increases microcirculation in distant skeletal muscle. J Orthop Res 1999; 17 (01) 88-95
- 77 Chen LE, Liu K, Qi WN. , et al. Role of nitric oxide in vasodilation in upstream muscle during intermittent pneumatic compression. J Appl Physiol (1985) 2002; 92 (02) 559-566
- 78 Tan X, Qi WN, Gu X, Urbaniak JR, Chen LE. Intermittent pneumatic compression regulates expression of nitric oxide synthases in skeletal muscles. J Biomech 2006; 39 (13) 2430-2437
- 79 Rifkind JM, Nagababu E, Dobrosielski DA. , et al. The effect of intermittent pneumatic compression of legs on the levels of nitric oxide related species in blood and on arterial function in the arm. Nitric Oxide 2014; 40: 117-122
- 80 Iba T, Shin T, Sonoda T, Rosales O, Sumpio BE. Stimulation of endothelial secretion of tissue-type plasminogen activator by repetitive stretch. J Surg Res 1991; 50 (05) 457-460
- 81 Iba T, Sumpio BE. Tissue plasminogen activator expression in endothelial cells exposed to cyclic strain in vitro. Cell Transplant 1992; 1 (01) 43-50
- 82 Tsukurov OI, Kwolek CJ, L'Italien GJ. , et al. The response of adult human saphenous vein endothelial cells to combined pressurized pulsatile flow and cyclic strain, in vitro. Ann Vasc Surg 2000; 14 (03) 260-267
- 83 Reitsma PH. Genetic heterogeneity in hereditary thrombophilia. Haemostasis 2000; 30 (Suppl. 02) 1-10
- 84 Kujovich JL. Factor V Leiden Thrombophilia. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, Amemiya A. , eds. Genetics IN Medicine. Vol. 13. GeneReviews® [Internet]. Seattle, WA: University of Washington, Seattle; 2011
- 85 Simeoni I, Stephens JC, Hu F. , et al. A high-throughput sequencing test for diagnosing inherited bleeding, thrombotic, and platelet disorders. Blood 2016; 127 (23) 2791-2803
- 86 de Groot PG, Lutters B, Derksen RH, Lisman T, Meijers JC, Rosendaal FR. Lupus anticoagulants and the risk of a first episode of deep venous thrombosis. J Thromb Haemost 2005; 3 (09) 1993-1997
- 87 Watson HG, Chee YL. Aspirin and other antiplatelet drugs in the prevention of venous thromboembolism. Blood Rev 2008; 22 (02) 107-116
- 88 Azboy I, Barrack R, Thomas AM, Haddad FS, Parvizi J. Aspirin and the prevention of venous thromboembolism following total joint arthroplasty: commonly asked questions. Bone Joint J 2017; 99-B (11) 1420-1430
- 89 Sheldon RD, Roseguini BT, Laughlin MH, Newcomer SC. New insights into the physiologic basis for intermittent pneumatic limb compression as a therapeutic strategy for peripheral artery disease. J Vasc Surg 2013; 58 (06) 1688-1696