Subscribe to RSS
DOI: 10.1055/s-0040-1710023
Conceptual Design, Implementation, and Evaluation of Generic and Standard-Compliant Data Transfer into Electronic Health Records
Funding None.Publication History
09 December 2019
31 March 2020
Publication Date:
27 May 2020 (online)
Abstract
Objectives The objective of this study is the conceptual design, implementation and evaluation of a system for generic, standard-compliant data transfer into electronic health records (EHRs). This includes patient data from clinical research and medical care that has been semantically annotated and enhanced with metadata. The implementation is based on the single-source approach. Technical and clinical feasibilities, as well as cost-benefit efficiency, were investigated in everyday clinical practice.
Methods Münster University Hospital is a tertiary care hospital with 1,457 beds and 10,823 staff who treated 548,110 patients in 2018. Single-source metadata architecture transformation (SMA:T) was implemented as an extension to the EHR system. This architecture uses Model Driven Software Development (MDSD) to generate documentation forms according to the Clinical Data Interchange Standards Consortium (CDISC) operational data model (ODM). Clinical data are stored in ODM format in the EHR system database. Documentation forms are based on Google's Material Design Standard. SMA:T was used at a total of five clinics and one administrative department in the period from March 1, 2018 until March 31, 2019 in everyday clinical practice.
Results The technical and clinical feasibility of SMA:T was demonstrated in the course of the study. Seventeen documentation forms including 373 data items were created with SMA:T. Those were created for 2,484 patients by 283 users in everyday clinical practice. A total of 121 documentation forms were examined retrospectively. The Constructive cost model (COCOMO II) was used to calculate cost and time savings. The form development mean time was reduced by 83.4% from 3,357 to 557 hours. Average costs per form went down from EUR 953 to 158.
Conclusion Automated generic transfer of standard-compliant data and metadata into EHRs is technically and clinically feasible, cost efficient, and a useful method to establish comprehensive and semantically annotated clinical documentation. Savings of time and personnel resources are possible.
Keywords
hospital information systems - electronic health records - medical informatics - operational data model - single-source metadata architecture transformationProtection of Human and Animal Subjects
This manuscript contains no patient data; therefore, it is not subject to human subject research approval.
-
References
- 1 Tapuria A, Bruland P, Delaney B, Kalra D, Curcin V. Comparison and transformation between CDISC ODM and EN13606 EHR standards in connecting EHR data with clinical trial research data. Digit Health 2018; 4: 2055207618777676
- 2 Maldonado JA, Marcos M, Fernández-Breis JT. , et al. A platform for exploration into chaining of web services for clinical data transformation and reasoning. AMIA Annu Symp Proc 2017; 2016 (04) 854-863
- 3 Herzberg S, Rahbar K, Stegger L, Schäfers M, Dugas M. Concept and Implementation of a Single Source Information System in Nuclear Medicine for Myocardial Scintigraphy (SPECT-CT data). Appl Clin Inform 2010; 1 (01) 50-67
- 4 Laleci GB, Yuksel M, Dogac A. Providing semantic interoperability between clinical care and clinical research domains. IEEE J Biomed Health Inform 2013; 17 (02) 356-369
- 5 Weng C, Appelbaum P, Hripcsak G. , et al. Using EHRs to integrate research with patient care: promises and challenges. J Am Med Inform Assoc 2012; 19 (05) 684-687
- 6 Jensen PB, Jensen LJ, Brunak S. Mining electronic health records: towards better research applications and clinical care. Nat Rev Genet 2012; 13 (06) 395-405
- 7 Kropf S, Chalopin C, Lindner D, Denecke K. Domain modeling and application development of an archetype- and XML-based EHRS. Practical experiences and lessons learnt. Appl Clin Inform 2017; 8 (02) 660-679
- 8 Bruland P, Forster C, Breil B, Ständer S, Dugas M, Fritz F. Does single-source create an added value? Evaluating the impact of introducing x4T into the clinical routine on workflow modifications, data quality and cost-benefit. Int J Med Inform 2014; 83 (12) 915-928
- 9 Forster C, Bruland P, Lechtenbörger J, Breil B, Vossen G. Connecting clinical care and research: Single-source with x4T – Process design, architecture, and use cases. Inf Tecnol 2015; 57 (01) 1211
- 10 Optum. ICD-10-CM Clinical Documentation Improvement Desk Reference. Optuminsight Inc.; 2018
- 11 Prokosch HU, Ganslandt T. Perspectives for medical informatics. Reusing the electronic medical record for clinical research. Methods Inf Med 2009; 48 (01) 38-44
- 12 Baumann LA, Baker J, Elshaug AG. The impact of electronic health record systems on clinical documentation times: a systematic review. Health Policy 2018; 122 (08) 827-836
- 13 Wang Y, Wang L, Rastegar-Mojarad M. , et al. Clinical information extraction applications: A literature review. J Biomed Inform 2018; 77: 34-49
- 14 Shenvi EC, Meeker D, Boxwala AA. Understanding data requirements of retrospective studies. Int J Med Inform 2015; 84 (01) 76-84
- 15 Köpcke F, Trinczek B, Majeed RW. , et al. Evaluation of data completeness in the electronic health record for the purpose of patient recruitment into clinical trials: a retrospective analysis of element presence. BMC Med Inform Decis Mak 2013; 13 (01) 37
- 16 Shwarz-Boeger U, Kiechle M, Paepke S. , et al. EHR and EDC Integration in Reality. Available at: http://www.appliedclinicaltrialsonline.com/ehr-and-edc-integration-reality . Accessed October 13, 2019
- 17 Scholte RA, Opmeer BC, Ploem MC. [From record keeping to scientific research: obstacles and opportunities for research with electronic health records] (in Dutch). Ned Tijdschr Geneeskd 2017; 161: D1738
- 18 Rosenbloom ST, Carroll RJ, Warner JL, Matheny ME, Denny JC. Representing knowledge consistently across health systems. Yearb Med Inform 2017; 26 (01) 139-147
- 19 van Velthoven MH, Mastellos N, Majeed A, O'Donoghue J, Car J. Feasibility of extracting data from electronic medical records for research: an international comparative study. BMC Med Inform Decis Mak 2016; 16 (01) 90
- 20 Watterson JL, Rodriguez HP, Aguilera A, Shortell SM. Ease of use of electronic health records and relational coordination among primary care team members. Health Care Manage Rev 2018;
- 21 Bonomi L, Jiang X. Linking temporal medical records using non-protected health information data. Stat Methods Med Res 2018; 27 (11) 3304-3324
- 22 Dugas M, Breil B, Thiemann V, Lechtenbörger J, Vossen G. Single source information systems to connect patient care and clinical research. Stud Health Technol Inform 2009; 150: 61-65
- 23 Universitätsklinikum Münster UKM. Available at: https://www.ukm.de/ . Accessed October 13, 2019
- 24 UKM. Klinik für Psychiatrie und Psychotherapie der Universitätsklinik Münster. Available at: https://www.ukm.de/index.php?id=psychiatrie_uebersicht . Accessed October 13, 2019
- 25 UKM. Klinik für Kinder- und Jugendmedizin (Allgemeine Pädiatrie) der Universitätsklinik Münster. ukm.de. Available at: https://www.ukm.de/index.php?id=paed_uebersicht . Accessed October 13, 2019
- 26 UKM. Klinik für Allgemein- und Viszeralchirurgie der Universitätsklinik Münster. Available at: https://www.ukm.de/index.php?id=chiurgie_uebersicht . Accessed October 13, 2019
- 27 UKM. Klinik für Phoniatrie und Pädaudiologie der Universitätsklinik Münster. Available at: https://www.ukm.de/index.php?id=phoniatrie_uebersicht . Accessed October 13, 2019
- 28 UKM. Klinik für Neurologie mit Institut für Translationale Neurologie. Available at: https://www.ukm.de/index.php?id=neurologie_uebersicht . Accessed October 13, 2019
- 29 Palliativmedizin der Universitätsklinik Münster UKM. Available at: https://www.ukm.de/index.php?id=palliativmedizin . Accessed October 13, 2019
- 30 AGFA. ORBIS, das Krankenhaus-Informationssystem von Agfa HealthCare. Available at: https://global.agfahealthcare.com/dach/krankenhaus-informationssystem/ . Accessed October 13, 2019
- 31 Blitz R DM. 62. Jahrestagung der Deutschen Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie e. V. (GMDS). Chronos–Ein xml-basiertes User-Interface-Framework zur effizienten Erstellung klinischer Dokumentationsbögen. 2017: Doi:10.3205/17gmds110
- 32 Stahl T, Efftinge S, Haase A, Völter M. Modellgetriebene Softwareentwicklung. dpunkt.verlag; 2012
- 33 CDISC. eSource Data Interchange Document. Available at: https://www.cdisc.org/esdi-document . Accessed October 13, 2019
- 34 FDA< CDER, CBER. Study data technical conformance guide. Available at: https://www.fda.gov/media/122913/download . Accessed October 13, 2019
- 35 CDISC. ODM-XML. Available at: https://www.cdisc.org/standards/data-exchange/odm . Accessed October 13, 2019
- 36 CDISC. Clinical Data Interchange Standards Consortium. Available at: http://www.cdisc.org . Accessed October 13, 2019
- 37 CDISC. Glossary, Abbreviation and Acronyms. Available at: https://www.cdisc.org/standards/glossary . Accessed October 13, 2019
- 38 CDISC. Define-XML. Available at: https://www.cdisc.org/standards/data-exchange/define-xml . Accessed October 13, 2019.
- 39 Lynch KE, Deppen SA, DuVall SL. , et al. Incrementally transforming electronic medical records into the observational medical outcomes partnership common data model: a multidimensional quality assurance approach. Appl Clin Inform 2019; 10 (05) 794-803
- 40 Agniel D, Kohane IS, Weber GM. Biases in electronic health record data due to processes within the healthcare system: retrospective observational study. BMJ 2018; 361: k1479
- 41 Verheij RA, Curcin V, Delaney BC, McGilchrist MM. Possible Sources of Bias in Primary Care Electronic Health Record Data Use and Reuse. J Med Internet Res 2018; 20 (05) e185
- 42 Soto-Rey I, Neuhaus P, Bruland P. , et al. Standardising the development of ODM converters: the ODMToolBox. Stud Health Technol Inform 2018; 247: 231-235
- 43 Health Level Seven International (HL7). Available at: http://www.hl7.org/ . Accessed October 13, 2019
- 44 NextGen. NextGen. Available at: https://www.nextgen.com/ . Accessed October 13, 2019
- 45 Google. Design guidance and code. Available at: https://material.io/ . Accessed October 13, 2019
- 46 UKM. Universitätsklinikum Münster Geschäftsbereich IT.Available at: https://www.ukm.de/index.php?id=gb-it . Accessed October 13, 2019
- 47 IBM. IBM SPSS Statistics. Available at: https://www.ibm.com/analytics/spss-statistics-software . Accessed October 13, 2019
- 48 Adobe. Adobe Photoshop.Available at: https://www.adobe.com/de/products/photoshop.html . Accessed October 13, 2019
- 49 Microsoft. Microsoft Visio. Available at: https://products.office.com/de-de/visio/flowchart-software?tab=tabs-1 . Accessed October 13, 2019
- 50 University of Southern California. COCOMO II. Available at: http://sunset.usc.edu/csse/affiliate/private/COCOMOII_2000/COCOMOII-040600/modelman.pdf . Accessed October 13, 2019
- 51 Fern-Uni-Hagen. Fern-Uni-Hagen (Ed.): TV-L Arbeitgeberberechnung. fernuni-hagen.de. Available at: http://www.fernuni-hagen.de/arbeiten/personalthemen/bezahlung/index.shtml . Accessed October 13, 2019
- 52 Gamma E, Helm R, Johnson R, Vlissides J. Design Patterns: Entwurfsmuster als Elemente wiederverwendbarer objektorientierter Software. MITP-Verlags GmbH & Co. KG;2015
- 53 Medicine USNLO. Unified Medical Language System (UMLS). Available at: https://www.nlm.nih.gov/research/umls/ . Accessed October 13, 2019
- 54 Williams R, Kontopantelis E, Buchan I, Peek N. Clinical code set engineering for reusing EHR data for research: A review. J Biomed Inform 2017; 70: 1-13
- 55 Luo Z, Yetisgen-Yildiz M, Weng C. Dynamic categorization of clinical research eligibility criteria by hierarchical clustering. J Biomed Inform 2011; 44 (06) 927-935
- 56 Varghese J, Dugas M. Frequency analysis of medical concepts in clinical trials and their coverage in MeSH and SNOMED-CT. Methods Inf Med 2015; 54 (01) 83-92
- 57 Varghese J, Sandmann S, Dugas M. Web-based information infrastructure increases the interrater reliability of medical coders: quasi-experimental study. J Med Internet Res 2018; 20 (10) e274
- 58 Kannan V, Basit MA, Youngblood JE. , et al. Agile co-development for clinical adoption and adaptation of Innovative Technologies. Health Innov Point Care Conf 2018; 56-59 ; Doi: 10.1109/HIC.2017.8227583
- 59 Blitz R. Single-source Metadata ARchitecture Transformation - Supplement. Doi: 10.6084/m9.figshare.12011592
- 60 Bargas-Avila JA, Brenzikofer O, Roth SP, User AT. 2010 Simple but crucial user interfaces in the world wide web: introducing 20 guidelines for usable web form design. Intechopencom. DOI: 10.5772/9500. Available at: https://www.intechopen.com/books/user-interfaces/simple-but-crucial-user-interfaces-in-the-world-wide-web-introducing-20-guidelines-for-usable-web-fo . Accessed April 9, 2020
- 61 Idrus Z, Razak N. , ICCEA NTAA, 2010 Using Three Layer Model (TLM) in web form design: WeFDeC checklist development. IEEE. Published in: 2010 Second International Conference on Computer Engineering and Applications. Doi: 10.1109/ICCEA.2010.81
- 62 United States. Dept. of Health, Human Services, & United States. General Services Administration. Research-based Web Design & Usability Guidelines. U.S. Department of Health and Human Services; 2006
- 63 Seckler M, Heinz S, Bargas-Avila JA. , et al. Designing Usable Web Forms: Empirical Evaluation of Web Form Improvement Guidelines. Available at: https://dl.acm.org/doi/abs/10.1145/2556288.2557265 . Accessed April 9, 2020
- 64 FY. UTF-8, a transformation format of ISO 10646. Available at: https://tools.ietf.org/pdf/rfc3629.pdf . Accessed October 13, 2019
- 65 World Wide Web Consortium. Extensible Markup Language (XML). Available at: http://www.w3.org/TR/2006/REC-xml11-20060816/ . Accessed October 13, 2019
- 66 Ethier J-F, Curcin V, McGilchrist MM. , et al. eSource for clinical trials: Implementation and evaluation of a standards-based approach in a real world trial. Int J Med Inform 2017; 106: 17-24
- 67 Matsumura Y, Hattori A, Manabe S. , et al. Interconnection of electronic medical record with clinical data management system by CDISC ODM. Stud Health Technol Inform 2014; 205: 868-872
- 68 Matsumura Y, Hattori A, Manabe S. , et al. Case Report Form Reporter: A Key Component for the Integration of Electronic Medical Records and the Electronic Data Capture System. Stud Health Technol Inform 2017; 245: 516-520
- 69 El Fadly A, Lucas N, Rance B, Verplancke P, Lastic P-Y, Daniel C. The REUSE project: EHR as single datasource for biomedical research. Stud Health Technol Inform 2010; 160 (Pt 2): 1324-1328
- 70 Program BCHCHI, Informatics THMSDFB. Substitutable Medical Applications and Reusable Technologies (SMART). Available at: https://smarthealthit.org . Accessed October 13, 2019