Semin Musculoskelet Radiol 2020; 24(03): 290-309
DOI: 10.1055/s-0040-1710065
Review Article

Image-guided Sports Medicine and Musculoskeletal Tumor Interventions: A Patient-Centered Model

1   Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland
2   Nuffield Orthopaedic Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
,
3   School of Biomedical Engineering & Imaging Sciences, King’s College London, London, United Kingdom
,
Ali Rashidi
1   Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland
,
Gunnar Åström
4   Department of Immunology, Genetics and Pathology (Oncology) and department of Surgical Sciences (Radiology), Uppsala University, Uppsala, Sweden
,
1   Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland
5   Department of Radiology, Division of Musculoskeletal Imaging, New York University Grossman School of Medicine, New York, New York
› Institutsangaben

Abstract

The spectrum of effective musculoskeletal (MSK) interventions is broadening and rapidly evolving. Increasing demands incite a perpetual need to optimize services and interventions by maximizing the diagnostic and therapeutic yield, reducing exposure to ionizing radiation, increasing cost efficiency, as well as identifying and promoting effective procedures to excel in patient satisfaction ratings and outcomes. MSK interventions for the treatment of oncological conditions, and conditions related to sports injury can be performed with different imaging modalities; however, there is usually one optimal image guidance modality for each procedure and individual patient. We describe our patient-centered workflow as a model of care that incorporates state-of-the-art imaging techniques, up-to-date evidence, and value-based practices with the intent of optimizing procedural success and outcomes at a patient-specific level. This model contrasts interventionalist- and imaging modality-centered practices, where procedures are performed based on local preference and selective availability of imaging modality or interventionalists. We discuss rationales, benefits, and limitations of fluoroscopy, ultrasound, computed tomography, and magnetic resonance imaging procedure guidance for a broad range of image-guided MSK interventions to diagnose and treat sports and tumor-related conditions.



Publikationsverlauf

Artikel online veröffentlicht:
28. September 2020

© 2020. Thieme. All rights reserved.

Thieme Medical Publishers
333 Seventh Avenue, New York, NY 10001, USA.

 
  • References

  • 1 Suh CH, Yun SJ. Diagnostic outcome of image-guided percutaneous core needle biopsy of sclerotic bone lesions: a meta-analysis. AJR Am J Roentgenol 2019; 212 (03) 625-631
  • 2 Kubo T, Furuta T, Johan MP, Sakuda T, Ochi M, Adachi N. A meta-analysis supports core needle biopsy by radiologists for better histological diagnosis in soft tissue and bone sarcomas. Medicine (Baltimore) 2018; 97 (29) e11567
  • 3 Finnoff JT, Hall MM, Adams E. , et al. American Medical Society for Sports Medicine (AMSSM) position statement: interventional musculoskeletal ultrasound in sports medicine. Br J Sports Med 2015; 49 (03) 145-150
  • 4 Sibbitt Jr WL, Band PA, Chavez-Chiang NR, Delea SL, Norton HE, Bankhurst AD. A randomized controlled trial of the cost-effectiveness of ultrasound-guided intraarticular injection of inflammatory arthritis. J Rheumatol 2011; 38 (02) 252-263
  • 5 Hendee WR, Becker GJ, Borgstede JP. , et al. Addressing overutilization in medical imaging. Radiology 2010; 257 (01) 240-245
  • 6 Lukoff J, Olmos J. Minimizing medical radiation exposure by incorporating a new radiation “vital sign” into the electronic medical record: quality of care and patient safety. Perm J 2017; 21: 17-007
  • 7 Reeves S, Pelone F, Harrison R, Goldman J, Zwarenstein M. Interprofessional collaboration to improve professional practice and healthcare outcomes. Cochrane Database Syst Rev 2017; 6: CD000072
  • 8 Pillay B, Wootten AC, Crowe H. , et al. The impact of multidisciplinary team meetings on patient assessment, management and outcomes in oncology settings: a systematic review of the literature. Cancer Treat Rev 2016; 42: 56-72
  • 9 Breitbach AP, Reeves S, Fletcher SN. Health care as a team sport? Studying athletics to improve interprofessional collaboration. Sports (Basel) 2017; 5 (03) 62
  • 10 Corwin A, Aresty A, Chong S. , et al. Will they fit? Development of a measurement device to assess body habitus compatibility with MRI bore diameter for emergency trauma imaging. Emerg Radiol 2012; 19 (02) 141-148
  • 11 Uppot RN, Sahani DV, Hahn PF, Gervais D, Mueller PR. Impact of obesity on medical imaging and image-guided intervention. AJR Am J Roentgenol 2007; 188 (02) 433-440
  • 12 Munn Z, Jordan Z. Interventions to reduce anxiety, distress and the need for sedation in adult patients undergoing magnetic resonance imaging: a systematic review. Int J Evid-Based Healthc 2013; 11 (04) 265-274
  • 13 Viggiano MP, Giganti F, Rossi A. , et al. Impact of psychological interventions on reducing anxiety, fear and the need for sedation in children undergoing magnetic resonance imaging. Pediatr Rep 2015; 7 (01) 5682
  • 14 Hyde LL, , J Mackenzie L, Boyes AW, Symonds M, Brown S, Sanson-Fisher R. Medical imaging outpatients' experiences with receiving information required for informed consent and preparation: a cross-sectional study. J Patient Exp 2018; 5 (04) 296-302
  • 15 Fritz J, Tzaribachev N, Thomas C. , et al. Evaluation of MR imaging guided steroid injection of the sacroiliac joints for the treatment of children with refractory enthesitis-related arthritis. Eur Radiol 2011; 21 (05) 1050-1057
  • 16 Fritz J, Henes JC, Thomas C. , et al. Diagnostic and interventional MRI of the sacroiliac joints using a 1.5-T open-bore magnet: a one-stop-shopping approach. AJR Am J Roentgenol 2008; 191 (06) 1717-1724
  • 17 Günaydin I, Pereira PL, Fritz J, König C, Kötter I. Magnetic resonance imaging guided corticosteroid injection of sacroiliac joints in patients with spondylarthropathy. Are multiple injections more beneficial?. Rheumatol Int 2006; 26 (05) 396-400
  • 18 Petersilge CA, Lewin JS, Duerk JL, Hatem SF. MR arthrography of the shoulder: rethinking traditional imaging procedures to meet the technical requirements of MR imaging guidance. AJR Am J Roentgenol 1997; 169 (05) 1453-1457
  • 19 Strauss KJ, Kaste SC. The ALARA concept in pediatric interventional and fluoroscopic imaging: striving to keep radiation doses as low as possible during fluoroscopy of pediatric patients—a white paper executive summary. AJR Am J Roentgenol 2006; 187 (03) 818-819
  • 20 Brady Z. Radiation dose in fluoroscopy: experience does matter. J Med Imaging Radiat Oncol 2016; 60 (04) 457-458
  • 21 Sheyn DD, Racadio JM, Ying J, Patel MN, Racadio JM, Johnson ND. Efficacy of a radiation safety education initiative in reducing radiation exposure in the pediatric IR suite. Pediatr Radiol 2008; 38 (06) 669-674
  • 22 Fritz J, Miller TT. Sonography and fluoroscopy guidance for percutaneous musculoskeletal procedures. Skeletal Radiol 2017; 46 (02) 225-226
  • 23 Lyders EM, Morris PP. A case of spinal cord infarction following lumbar transforaminal epidural steroid injection: MR imaging and angiographic findings. AJNR Am J Neuroradiol 2009; 30 (09) 1691-1693
  • 24 Sequeiros RB, Sinikumpu JJ, Ojala R, Järvinen J, Fritz J. Pediatric musculoskeletal interventional MRI. Top Magn Reson Imaging 2018; 27 (01) 39-44
  • 25 Fritz J, Sequeiros RB, Carrino JA. Magnetic resonance imaging-guided spine injections. Top Magn Reson Imaging 2011; 22 (04) 143-151
  • 26 Fritz J, Thomas C, Tzaribachev N. , et al. MRI-guided injection procedures of the temporomandibular joints in children and adults: technique, accuracy, and safety. AJR Am J Roentgenol 2009; 193 (04) 1148-1154
  • 27 Torriani M, Etchebehere M, Amstalden E. Sonographically guided core needle biopsy of bone and soft tissue tumors. J Ultrasound Med 2002; 21 (03) 275-281
  • 28 Krause ND, Haddad ZK, Winalski CS, Ready JE, Nawfel RD, Carrino JA. Musculoskeletal biopsies using computed tomography fluoroscopy. J Comput Assist Tomogr 2008; 32 (03) 458-462
  • 29 Gruber-Rouh T, Thalhammer A, Klingebiel T. , et al. Computed tomography-guided biopsies in children: accuracy, efficiency and dose usage. Ital J Pediatr 2017; 43 (01) 4
  • 30 Shah V, Hillen T, Jennings J. Comparison of low-dose CT with CT/CT fluoroscopy guidance in percutaneous sacral and supra-acetabular cementoplasty. Diagn Interv Radiol 2019; 25 (05) 353-359
  • 31 Nawfel RD, Judy PF, Silverman SG, Hooton S, Tuncali K, Adams DF. Patient and personnel exposure during CT fluoroscopy-guided interventional procedures. Radiology 2000; 216 (01) 180-184
  • 32 Sarti M, Brehmer WP, Gay SB. Low-dose techniques in CT-guided interventions. Radiographics 2012; 32 (04) 1109-1119 ; discussion 1119–1120
  • 33 Ratanaprasatporn L, Mandell JC. Clinical utility of a postprocedural CT scan in CT-guided musculoskeletal biopsies. Skeletal Radiol 2020; 49 (02) 257-262
  • 34 Deli M, Fritz J, Mateiescu S. , et al. Saline as the sole contrast agent for successful MRI-guided epidural injections. Cardiovasc Intervent Radiol 2013; 36 (03) 748-755
  • 35 Parkkola RK, Mattila KT, Heikkilä JT. , et al. Dynamic contrast-enhanced MR imaging and MR-guided bone biopsy on a 0.23 T open imager. Skeletal Radiol 2001; 30 (11) 620-624
  • 36 Noebauer-Huhmann IM, Amann G, Krssak M. , et al. Use of diagnostic dynamic contrast-enhanced (DCE)-MRI for targeting of soft tissue tumour biopsies at 3T: preliminary results. Eur Radiol 2015; 25 (07) 2041-2048
  • 37 Koenig CW, Duda SH, Truebenbach J. , et al. MR-guided biopsy of musculoskeletal lesions in a low-field system. J Magn Reson Imaging 2001; 13 (05) 761-768
  • 38 Carrino JA, Khurana B, Ready JE, Silverman SG, Winalski CS. Magnetic resonance imaging-guided percutaneous biopsy of musculoskeletal lesions. J Bone Joint Surg Am 2007; 89 (10) 2179-2187
  • 39 Fritz J, Dellon AL, Williams EH, Belzberg AJ, Carrino JA. 3-Tesla high-field magnetic resonance neurography for guiding nerve blocks and its role in pain management. Magn Reson Imaging Clin N Am 2015; 23 (04) 533-545
  • 40 Fritz J, Chhabra A, Wang KC, Carrino JA. Magnetic resonance neurography-guided nerve blocks for the diagnosis and treatment of chronic pelvic pain syndrome. Neuroimaging Clin N Am 2014; 24 (01) 211-234
  • 41 Fritz J, Dellon AL, Williams EH, Rosson GD, Belzberg AJ, Eckhauser FE. Diagnostic accuracy of selective 3-T MR neurography-guided retroperitoneal genitofemoral nerve blocks for the diagnosis of genitofemoral neuralgia. Radiology 2017; 285 (01) 176-185
  • 42 Fritz J, Sonnow L, Morris CD. Adjuvant MRI-guided percutaneous cryoablation treatment for aneurysmal bone cyst. Skeletal Radiol 2019; 48 (07) 1149-1153
  • 43 Fritz J, Clasen S, Boss A. , et al. Real-time MR fluoroscopy-navigated lumbar facet joint injections: feasibility and technical properties. Eur Radiol 2008; 18 (07) 1513-1518
  • 44 Fritz J, Zolnoun D, Lee Dellon A. Anatomic variability of the lateral femoral cutaneous nerve: value of 3T MRI in identifying anomaly for surgical intervention. Microsurgery 2017; 37 (02) 165-168
  • 45 Weiss CR, Nour SG, Lewin JS. MR-guided biopsy: a review of current techniques and applications. J Magn Reson Imaging 2008; 27 (02) 311-325
  • 46 Sonnow L, Gilson WD, Raithel E, Nittka M, Wacker F, Fritz J. Instrument visualization using conventional and compressed sensing SEMAC for interventional MRI at 3T. J Magn Reson Imaging 2018; 47 (05) 1306-1315
  • 47 Rothgang E, Gilson WD, Wacker F, Hornegger J, Lorenz CH, Weiss CR. Rapid freehand MR-guided percutaneous needle interventions: an image-based approach to improve workflow and feasibility. J Magn Reson Imaging 2013; 37 (05) 1202-1212
  • 48 Fritz J, Thomas C, Clasen S, Claussen CD, Lewin JS, Pereira PL. Freehand real-time MRI-guided lumbar spinal injection procedures at 1.5 T: feasibility, accuracy, and safety. AJR Am J Roentgenol 2009; 192 (04) W161-7
  • 49 Marker DR, U-Thainual P, Ungi T. , et al. MR-guided perineural injection of the ganglion impar: technical considerations and feasibility. Skeletal Radiol 2016; 45 (05) 591-597
  • 50 König CW, Trübenbach J, Böhm P, Fritz J, Duda SH, Pereira PL. Magnetic resonance-guided transcortical biopsy of bone marrow lesions using a magnetic resonance imaging-compatible piezoelectric power drill: preliminary experience. Invest Radiol 2003; 38 (03) 159-163
  • 51 Ganguly A, Wen Z, Daniel BL. , et al. Truly hybrid X-ray/MR imaging: toward a streamlined clinical system. Acad Radiol 2005; 12 (09) 1167-1177
  • 52 Krimins RA, Fritz J, Gainsburg LA. , et al. Use of magnetic resonance imaging-guided biopsy of a vertebral body mass to diagnose osteosarcoma in a Rottweiler. J Am Vet Med Assoc 2017; 250 (07) 779-784
  • 53 Cassuto J, Sinclair R, Bonderovic M. Anti-inflammatory properties of local anesthetics and their present and potential clinical implications. Acta Anaesthesiol Scand 2006; 50 (03) 265-282
  • 54 Arnér S, Lindblom U, Meyerson BA, Molander C. Prolonged relief of neuralgia after regional anesthetic blocks. A call for further experimental and systematic clinical studies. Pain 1990; 43 (03) 287-297
  • 55 Hayashi N, Weinstein JN, Meller ST, Lee HM, Spratt KF, Gebhart GF. The effect of epidural injection of betamethasone or bupivacaine in a rat model of lumbar radiculopathy. Spine 1998; 23 (08) 877-885
  • 56 Cox B, Durieux ME, Marcus MA. Toxicity of local anaesthetics. Best Pract Res Clin Anaesthesiol 2003; 17 (01) 111-136
  • 57 Neal JM. Effects of epinephrine in local anesthetics on the central and peripheral nervous systems: neurotoxicity and neural blood flow. Reg Anesth Pain Med 2003; 28 (02) 124-134
  • 58 Ruetsch YA, Böni T, Borgeat A. From cocaine to ropivacaine: the history of local anesthetic drugs. Curr Top Med Chem 2001; 1 (03) 175-182
  • 59 Zink W, Bohl JR, Hacke N, Sinner B, Martin E, Graf BM. The long term myotoxic effects of bupivacaine and ropivacaine after continuous peripheral nerve blocks. Anesth Analg 2005; 101 (02) 548-554
  • 60 Lösel R, Wehling M. Nongenomic actions of steroid hormones. Nat Rev Mol Cell Biol 2003; 4 (01) 46-56
  • 61 Caldwell JR. Intra-articular corticosteroids. Guide to selection and indications for use. Drugs 1996; 52 (04) 507-514
  • 62 Benzon HT, Gissen AJ, Strichartz GR, Avram MJ, Covino BG. The effect of polyethylene glycol on mammalian nerve impulses. Anesth Analg 1987; 66 (06) 553-559
  • 63 MacMahon PJ, Eustace SJ, Kavanagh EC. Injectable corticosteroid and local anesthetic preparations: a review for radiologists. Radiology 2009; 252 (03) 647-661
  • 64 Cardone DA, Tallia AF. Joint and soft tissue injection. Am Fam Physician 2002; 66 (02) 283-288
  • 65 Kumar N, Newman RJ. Complications of intra- and peri-articular steroid injections. Br J Gen Pract 1999; 49 (443) 465-466
  • 66 Kompel AJ, Roemer FW, Murakami AM, Diaz LE, Crema MD, Guermazi A. Intra-articular corticosteroid injections in the hip and knee: perhaps not as safe as we thought?. Radiology 2019; 293 (03) 656-663
  • 67 MacMahon PJ, Shelly MJ, Scholz D, Eustace SJ, Kavanagh EC. Injectable corticosteroid preparations: an embolic risk assessment by static and dynamic microscopic analysis. AJNR Am J Neuroradiol 2011; 32 (10) 1830-1835
  • 68 MacMahon PJ, Huang AJ, Palmer WE. Spine injectables: what is the safest cocktail?. AJR Am J Roentgenol 2016; 207 (03) 526-533
  • 69 Cullen DM, Boyle JJ, Silbert PL, Singer BJ, Singer KP. Botulinum toxin injection to facilitate rehabilitation of muscle imbalance syndromes in sports medicine. Disabil Rehabil 2007; 29 (23) 1832-1839
  • 70 Weaver ML, Hicks CW, Fritz J, Black III JH, Lum YW. Local anesthetic block of the anterior scalene muscle increases muscle height in patients with neurogenic thoracic outlet syndrome. Ann Vasc Surg 2019; 59: 28-35
  • 71 Altman R, Bedi A, Manjoo A, Niazi F, Shaw P, Mease P. Anti-inflammatory effects of intra-articular hyaluronic acid: a systematic review. Cartilage 2019; 10 (01) 43-52
  • 72 Campbell RS, Dunn AJ. Radiological interventions for soft tissue injuries in sport. Br J Radiol 2012; 85 (1016): 1186-1193
  • 73 Fritz J, Niemeyer T, Clasen S. , et al. Management of chronic low back pain: rationales, principles, and targets of imaging-guided spinal injections. Radiographics 2007; 27 (06) 1751-1771
  • 74 Orchard JW. Benefits and risks of using local anaesthetic for pain relief to allow early return to play in professional football. Br J Sports Med 2002; 36 (03) 209-213
  • 75 Denny NM, Harrop-Griffiths W. Location, location, location! Ultrasound imaging in regional anaesthesia. Br J Anaesth 2005; 94 (01) 1-3
  • 76 Marhofer P, Greher M, Kapral S. Ultrasound guidance in regional anaesthesia. Br J Anaesth 2005; 94 (01) 7-17
  • 77 Abrahams MS, Aziz MF, Fu RF, Horn JL. Ultrasound guidance compared with electrical neurostimulation for peripheral nerve block: a systematic review and meta-analysis of randomized controlled trials. Br J Anaesth 2009; 102 (03) 408-417
  • 78 Steinfeldt T, Poeschl S, Nimphius W. , et al. Forced needle advancement during needle-nerve contact in a porcine model: histological outcome. Anesth Analg 2011; 113 (02) 417-420
  • 79 Choquet O, Morau D, Biboulet P, Capdevila X. Where should the tip of the needle be located in ultrasound-guided peripheral nerve blocks?. Curr Opin Anaesthesiol 2012; 25 (05) 596-602
  • 80 Tsui BC, Kropelin B. The electrophysiological effect of dextrose 5% in water on single-shot peripheral nerve stimulation. Anesth Analg 2005; 100 (06) 1837-1839
  • 81 Quiñones PK, Hattori S, Yamada S, Kato Y, Ohuchi H. Ultrasonography-guided muscle hematoma evacuation. Arthrosc Tech 2019; 8 (07) e721-e725
  • 82 Mankin HJ, Lange TA, Spanier SS. The hazards of biopsy in patients with malignant primary bone and soft-tissue tumors. J Bone Joint Surg Am 1982; 64 (08) 1121-1127
  • 83 Skrzynski MC, Biermann JS, Montag A, Simon MA. Diagnostic accuracy and charge-savings of outpatient core needle biopsy compared with open biopsy of musculoskeletal tumors. J Bone Joint Surg Am 1996; 78 (05) 644-649
  • 84 Fritz J, Tzaribachev N, Thomas C. , et al. Magnetic resonance imaging-guided osseous biopsy in children with chronic recurrent multifocal osteomyelitis. Cardiovasc Intervent Radiol 2012; 35 (01) 146-153
  • 85 Pereira PL, Fritz J, Koenig CW. , et al. Preoperative marking of musculoskeletal tumors guided by magnetic resonance imaging. J Bone Joint Surg Am 2004; 86 (08) 1761-1767
  • 86 Bittman RW, Peters GL, Newsome JM. , et al. Percutaneous image-guided cryoneurolysis. AJR Am J Roentgenol 2018; 210 (02) 454-465
  • 87 Bonham LW, Phelps A, Rosson GD, Fritz J. MR imaging-guided cryoneurolysis of the sural nerve. J Vasc Interv Radiol 2018; 29 (11) 1622-1624
  • 88 Joshi DH, Thawait GK, Del Grande F, Fritz J. MRI-guided cryoablation of the posterior femoral cutaneous nerve for the treatment of neuropathy-mediated sitting pain. Skeletal Radiol 2017; 46 (07) 983-987
  • 89 Sequeiros RB, Fritz J, Ojala R, Carrino JA. Percutaneous magnetic resonance imaging-guided bone tumor management and magnetic resonance imaging-guided bone therapy. Top Magn Reson Imaging 2011; 22 (04) 171-177
  • 90 Fritz J, U-Thainual P, Ungi T. , et al. MR-guided vertebroplasty with augmented reality image overlay navigation. Cardiovasc Intervent Radiol 2014; 37 (06) 1589-1596
  • 91 Riggin CN, Chen M, Gordon JA, Schultz SM, Soslowsky LJ, Khoury V. Ultrasound-guided dry needling of the healthy rat supraspinatus tendon elicits early healing without causing permanent damage. J Orthop Res 2019; 37 (09) 2035-2042
  • 92 Akoh CC, Phisitkul P. Minimally invasive and endoscopic approach for the treatment of noninsertional Achilles tendinopathy. Foot Ankle Clin 2019; 24 (03) 495-504
  • 93 Wu D, Li G, Patel N. , et al. Remotely actuated needle driving device for MRI-guided percutaneous interventions: force and accuracy evaluation. Conf Proc IEEE Eng Med Biol Soc 2019; 2019: 1985-1989
  • 94 Agten CA, Dennler C, Rosskopf AB, Jaberg L, Pfirrmann CWA, Farshad M. Augmented reality-guided lumbar facet joint injections. Invest Radiol 2018; 53 (08) 495-498
  • 95 Farshad-Amacker NA, Bay T, Rosskopf AB. , et al. Ultrasound-guided interventions with augmented reality in situ visualisation: a proof-of-mechanism phantom study. Eur Radiol Exp 2020; 4 (01) 7
  • 96 Fritz J, U-Thainual P, Ungi T. , et al. Augmented reality visualization using image overlay technology for MR-guided interventions: cadaveric bone biopsy at 1.5 T. Invest Radiol 2013; 48 (06) 464-470
  • 97 Fritz J, U-Thainual P, Ungi T. , et al. Augmented reality visualization with use of image overlay technology for MR imaging-guided interventions: assessment of performance in cadaveric shoulder and hip arthrography at 1.5 T. Radiology 2012; 265 (01) 254-259
  • 98 Fritz J, U-Thainual P, Ungi T. , et al. Augmented reality visualisation using an image overlay system for MR-guided interventions: technical performance of spine injection procedures in human cadavers at 1.5 Tesla. Eur Radiol 2013; 23 (01) 235-245