Subscribe to RSS
DOI: 10.1055/s-0040-1712493
Larger Chondral Lesions Treated with Collagen Membrane – Matrix-Induced Autologous Chondrogenesis – Show Larger Increase in Clinical Scores
Article in several languages: português | EnglishAbstract
Objective To evaluate clinically and radiologically the results of the treatment of chondral lesions using collagen membrane - autologous matrix-induced chondrogenesis (AMIC).
Methods This is a series of observational cases, in which 15 patients undergoing AMIC were analyzed. The clinical evaluation was made by comparing the Lysholm and International Knee Document Commitee (IKDC) scores in the pre- and postoperative period of 12 months, and radiological evaluation using the Magnetic Resonance Observation of Cartilage Repair Tissue (MOCART) score in the same postoperative period.
Results The mean age of the patients was 39.2 years old, and the mean size of the chondral lesions was 1.55cm2. There was a significant improvement in clinical scores, with a mean increase of 24.6 points on Lysholm and of 24.3 on IKDC after 12 months. In the radiological evaluation, MOCART had a mean of 65 points. It was observed that the larger the size of the lesion, the greater the improvement in scores.
Conclusion Evaluating subjective clinical scores, the treatment of chondral lesions with the collagen membrane showed good results, as well as the evaluation of MOCART, with greater benefit in larger lesions.
∗ Work developed at the Department of Orthopedics and Traumatology, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil.
Financial Support
There was no financial support from public, commercial, or non-profit sources.
Publication History
Received: 11 December 2019
Accepted: 02 March 2020
Article published online:
25 September 2020
© 2020. Sociedade Brasileira de Ortopedia e Traumatologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil
-
Referências
- 1 Gottardi R, Hansen U, Raiteri R. et al. Supramolecular Organization of Collagen Fibrils in Healthy and Osteoarthritic Human Knee and Hip Joint Cartilage. PLoS One 2016; 11 (10) e0163552
- 2 Arøen A, Løken S, Heir S. et al. Articular cartilage lesions in 993 consecutive knee arthroscopies. Am J Sports Med 2004; 32 (01) 211-215
- 3 Buckwalter JA, Mankin HJ. Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr Course Lect 1998; 47: 487-504
- 4 Raimondi MT, Bonacina E, Candiani G. et al. Comparative chondrogenesis of human cells in a 3D integrated experimental-computational mechanobiology model. Biomech Model Mechanobiol 2011; 10 (02) 259-268
- 5 Heir S, Nerhus TK, Røtterud JH. et al. Focal cartilage defects in the knee impair quality of life as much as severe osteoarthritis: a comparison of knee injury and osteoarthritis outcome score in 4 patient categories scheduled for knee surgery. Am J Sports Med 2010; 38 (02) 231-237
- 6 Farr J, Gomoll AH. 2016 barriers to cartilage restoration. J Clin Orthop Trauma 2016; 7 (03) 183-186
- 7 Kubosch EJ, Erdle B, Izadpanah K. et al. Clinical outcome and T2 assessment following autologous matrix-induced chondrogenesis in osteochondral lesions of the talus. Int Orthop 2016; 40 (01) 65-71
- 8 Steinwachs M. New technique for cell-seeded collagen-matrix-supported autologous chondrocyte transplantation. Arthroscopy 2009; 25 (02) 208-211
- 9 Kon E, Filardo G, Di Matteo B, Perdisa F, Marcacci M. Matrix assisted autologous chondrocyte transplantation for cartilage treatment: A systematic review. Bone Joint Res 2013; 2 (02) 18-25
- 10 Pridie K. A method of resurfacing osteoarthritic knee joints. J Bone Joint Surg Br 1959; 41: 618-619
- 11 Steadman JR, Rodkey WG, Rodrigo JJ. Microfracture: surgical technique and rehabilitation to treat chondral defects. Clin Orthop Relat Res 2001; ;(391, Suppl) S362-S369
- 12 Richter W. Mesenchymal stem cells and cartilage in situ regeneration. J Intern Med 2009; 266 (04) 390-405
- 13 Hunziker EB. Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthritis Cartilage 2002; 10 (06) 432-463
- 14 Kusano T, Jakob RP, Gautier E, Magnussen RA, Hoogewoud H, Jacobi M. Treatment of isolated chondral and osteochondral defects in the knee by autologous matrix-induced chondrogenesis (AMIC). Knee Surg Sports Traumatol Arthrosc 2012; 20 (10) 2109-2115
- 15 Bark S, Piontek T, Behrens P, Mkalaluh S, Varoga D, Gille J. Enhanced microfracture techniques in cartilage knee surgery: Fact or fiction?. World J Orthop 2014; 5 (04) 444-449
- 16 Gille J, Behrens P, Volpi P. et al. Outcome of Autologous Matrix Induced Chondrogenesis (AMIC) in cartilage knee surgery: data of the AMIC Registry. Arch Orthop Trauma Surg 2013; 133 (01) 87-93
- 17 Benthien JP, Behrens P. Autologous matrix-induced chondrogenesis (AMIC). A one-step procedure for retropatellar articular resurfacing. Acta Orthop Belg 2010; 76 (02) 260-263
- 18 Behrens P. Matrixgekoppelte Mikrofrakturierung. Arthroskopie 2005; 18: 193-197
- 19 Anders S, Martin Volz, Frick H, Gellissen J. A randomized, controlled trial comparing autologus matrix inducedchondrogenesis (AMIC) to microfracture: analysis of 1- and2-year follow-up data of 2 centers. Open Orthop J 2013; 7 (Suppl 1) M4:133-143
- 20 Peccin MS, Ciconneli R, Cohen M. Questionário específico para sintomas do joelho Lysholm Knee Scoring Scale –Tradução e validação para a língua Portuguesa. Acta Ortop Bras 2006; 14 (05) 268-272
- 21 Hefti F, Müller W, Jakob RP, Stäubli HU. Evaluation of knee ligament injuries with the IKDC form. Knee Surg Sports Traumatol Arthrosc 1993; 1 (3-4): 226-234
- 22 Marlovits S, Striessnig G, Resinger CT. et al. Definition of pertinent parameters for the evaluation of articular cartilage repair tissue with high-resolution magnetic resonance imaging. Eur J Radiol 2004; 52 (03) 310-319
- 23 Rosner B. Fundamentals of Biostatistics. 2nd . Boston: PWS Publishers; 1986
- 24 Astur DC, Lopes JC, Santos MA, Kaleka CC, Amaro JT, Cohen M. Surgical treatment of chondral knee defects using a collagen membrane - autologus matrix-induced chondrogenesis. Rev Bras Ortop 2018; 53 (06) 733-739
- 25 Fontana A, de Girolamo L. Sustained five-year benefit of autologous matrix-induced chondrogenesis for femoral acetabular impingement-induced chondral lesions compared with microfracture treatment. Bone Joint J 2015; 97-B (05) 628-635
- 26 Piontek T, Ciemniewska-Gorzela K, Szulc A, Naczk J, Słomczykowski M. All-arthroscopic AMIC procedure for repair of cartilage defects of the knee. Knee Surg Sports Traumatol Arthrosc 2012; 20 (05) 922-925
- 27 Schagemann J, Behrens P, Paech A. et al. Mid-term outcome of arthroscopic AMIC for the treatment of articular cartilage defects in the knee joint is equivalent to mini-open procedures. Arch Orthop Trauma Surg 2018; 138 (06) 819-825
- 28 Dhollander A, Moens K, Van der Maas J, Verdonk P, Almqvist KF, Victor J. Treatment of patellofemoral cartilage defects in the knee by autologous matrix-induced chondrogenesis (AMIC. Acta Orthop Belg 2014; 80 (02) 251-259