Semin Thromb Hemost 2020; 46(06): 724-734
DOI: 10.1055/s-0040-1715474
Review Article

Netting Liver Disease: Neutrophil Extracellular Traps in the Initiation and Exacerbation of Liver Pathology

Fien A. von Meijenfeldt
1   Surgical Research Laboratory and Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
,
Craig N. Jenne
2   Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, The University of Calgary, Calgary, Alberta, Canada
› Institutsangaben

Abstract

The liver plays a vital role in the immune system. Its unique position in the portal circulation and the architecture of the hepatic sinusoids, in combination with the wide-ranged population of immunocompetent cells, make the liver function as an immune filter. To aid in pathogen clearance, once challenged, the liver initiates the rapid recruitment of a wide variety of inflammatory cells, including neutrophils. These neutrophils, in conjunction with platelets, facilitate the release of neutrophil extracellular traps (NETs), which are web-like structures of decondensed nuclear DNA, histones, and neutrophil proteins. NETs function as both a physical and a chemical barrier, binding and killing pathogens circulating in the blood stream. In addition to their antimicrobial role, NETs also bind platelets, activate coagulation, and exacerbate host inflammatory response. This interplay between inflammation and coagulation drives microvascular occlusion, ischemia, and (sterile) damage in liver disease. Although direct clinical evidence of this interplay is scarce, preliminary studies indicate that NETs contribute to progression of liver disease and (thrombotic) complications. Here, we provide an overview of the pathological mechanisms of NETs in liver disease. In addition, we summarize clinical evidence for NETs in different disease etiologies and complications of liver disease and discuss the possible implications for the use of NETs as a diagnostic marker and a therapeutic target in liver disease.



Publikationsverlauf

Artikel online veröffentlicht:
09. September 2020

© 2020. Thieme. All rights reserved.

Thieme Medical Publishers
333 Seventh Avenue, New York, NY 10001, USA.

 
  • References

  • 1 Collardeau-Frachon S, Scoazec JY. Vascular development and differentiation during human liver organogenesis. Anat Rec (Hoboken) 2008; 291 (06) 614-627
  • 2 Popescu DM, Botting RA, Stephenson E. , et al. Decoding human fetal liver haematopoiesis. Nature 2019; 574 (7778): 365-371
  • 3 Zwiebel WJ, Mountford RA, Halliwell MJ, Wells PN. Splanchnic blood flow in patients with cirrhosis and portal hypertension: investigation with duplex Doppler US. Radiology 1995; 194 (03) 807-812
  • 4 Oda M, Yokomori H, Han JY. Regulatory mechanisms of hepatic microcirculation. Clin Hemorheol Microcirc 2003; 29 (3–4): 167-182
  • 5 Stahl WR. Organ weights in primates and other mammals. Science 1965; 150 (3699): 1039-1042
  • 6 Lautt WW. Hepatic circulation: physiology and pathophysiology. San Rafael, CA: Morgan & Claypool Life Sciences; 2009
  • 7 Sheth K, Bankey P. The liver as an immune organ. Curr Opin Crit Care 2001; 7 (02) 99-104
  • 8 DeLeve LD, Maretti-Mira AC. Liver sinusoidal endothelial cell: an update. Semin Liver Dis 2017; 37 (04) 377-387
  • 9 Poisson J, Lemoinne S, Boulanger C. , et al. Liver sinusoidal endothelial cells: physiology and role in liver diseases. J Hepatol 2017; 66 (01) 212-227
  • 10 Seki E, Brenner DA. Toll-like receptors and adaptor molecules in liver disease: update. Hepatology 2008; 48 (01) 322-335
  • 11 Zhang X, Meng Z, Qiu S. , et al. Lipopolysaccharide-induced innate immune responses in primary hepatocytes downregulates woodchuck hepatitis virus replication via interferon-independent pathways. Cell Microbiol 2009; 11 (11) 1624-1637
  • 12 Guidotti LG, Inverso D, Sironi L. , et al. Immunosurveillance of the liver by intravascular effector CD8(+) T cells. Cell 2015; 161 (03) 486-500
  • 13 Schulz C, Gomez Perdiguero E, Chorro L. , et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 2012; 336 (6077): 86-90
  • 14 Kubes P, Jenne C. Immune responses in the liver. Annu Rev Immunol 2018; 36: 247-277
  • 15 Zeng Z, Surewaard BG, Wong CH, Geoghegan JA, Jenne CN, Kubes P. CRIg functions as a macrophage pattern recognition receptor to directly bind and capture blood-borne gram-positive bacteria. Cell Host Microbe 2016; 20 (01) 99-106
  • 16 Lee WY, Moriarty TJ, Wong CH. , et al. An intravascular immune response to Borrelia burgdorferi involves Kupffer cells and iNKT cells. Nat Immunol 2010; 11 (04) 295-302
  • 17 You Q, Cheng L, Kedl RM, Ju C. Mechanism of T cell tolerance induction by murine hepatic Kupffer cells. Hepatology 2008; 48 (03) 978-990
  • 18 Brinkmann V, Reichard U, Goosmann C. , et al. Neutrophil extracellular traps kill bacteria. Science 2004; 303 (5663): 1532-1535
  • 19 Fuchs TA, Abed U, Goosmann C. , et al. Novel cell death program leads to neutrophil extracellular traps. J Cell Biol 2007; 176 (02) 231-241
  • 20 Yipp BG, Kubes P. NETosis: how vital is it?. Blood 2013; 122 (16) 2784-2794
  • 21 Honda M, Kubes P. Neutrophils and neutrophil extracellular traps in the liver and gastrointestinal system. Nat Rev Gastroenterol Hepatol 2018; 15 (04) 206-221
  • 22 McDonald B, Urrutia R, Yipp BG, Jenne CN, Kubes P. Intravascular neutrophil extracellular traps capture bacteria from the bloodstream during sepsis. Cell Host Microbe 2012; 12 (03) 324-333
  • 23 Jenne CN, Wong CH, Zemp FJ. , et al. Neutrophils recruited to sites of infection protect from virus challenge by releasing neutrophil extracellular traps. Cell Host Microbe 2013; 13 (02) 169-180
  • 24 Huang H, Tohme S, Al-Khafaji AB. , et al. Damage-associated molecular pattern-activated neutrophil extracellular trap exacerbates sterile inflammatory liver injury. Hepatology 2015; 62 (02) 600-614
  • 25 Gupta AK, Joshi MB, Philippova M. , et al. Activated endothelial cells induce neutrophil extracellular traps and are susceptible to NETosis-mediated cell death. FEBS Lett 2010; 584 (14) 3193-3197
  • 26 Jiménez-Alcázar M, Rangaswamy C, Panda R. , et al. Host DNases prevent vascular occlusion by neutrophil extracellular traps. Science 2017; 358 (6367): 1202-1206
  • 27 Clark SR, Ma AC, Tavener SA. , et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med 2007; 13 (04) 463-469
  • 28 Zucoloto AZ, Jenne CN. Platelet-neutrophil interplay: Insights into neutrophil extracellular trap (NET)-driven coagulation in infection. Front Cardiovasc Med 2019; 6: 85
  • 29 Carestia A, Kaufman T, Rivadeneyra L. , et al. Mediators and molecular pathways involved in the regulation of neutrophil extracellular trap formation mediated by activated platelets. J Leukoc Biol 2016; 99 (01) 153-162
  • 30 Etulain J, Martinod K, Wong SL, Cifuni SM, Schattner M, Wagner DD. P-selectin promotes neutrophil extracellular trap formation in mice. Blood 2015; 126 (02) 242-246
  • 31 Fuchs TA, Brill A, Duerschmied D. , et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci U S A 2010; 107 (36) 15880-15885
  • 32 McDonald B, Davis RP, Kim SJ. , et al. Platelets and neutrophil extracellular traps collaborate to promote intravascular coagulation during sepsis in mice. Blood 2017; 129 (10) 1357-1367
  • 33 Semeraro F, Ammollo CT, Morrissey JH. , et al. Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and TLR4. Blood 2011; 118 (07) 1952-1961
  • 34 Massberg S, Grahl L, von Bruehl ML. , et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med 2010; 16 (08) 887-896
  • 35 Engelmann B, Massberg S. Thrombosis as an intravascular effector of innate immunity. Nat Rev Immunol 2013; 13 (01) 34-45
  • 36 Sambrano GR, Huang W, Faruqi T, Mahrus S, Craik C, Coughlin SR. Cathepsin G activates protease-activated receptor-4 in human platelets. J Biol Chem 2000; 275 (10) 6819-6823
  • 37 Mihara K, Ramachandran R, Renaux B, Saifeddine M, Hollenberg MD. Neutrophil elastase and proteinase-3 trigger G protein-biased signaling through proteinase-activated receptor-1 (PAR1). J Biol Chem 2013; 288 (46) 32979-32990
  • 38 Hilscher MB, Sehrawat T, Arab JP. , et al. Mechanical stretch increases expression of CXCL1 in liver sinusoidal endothelial cells to recruit neutrophils, generate sinusoidal microthrombi, and promote portal hypertension. Gastroenterology 2019; 157 (01) 193-209.e9
  • 39 Villa E, Cammà C, Marietta M. , et al. Enoxaparin prevents portal vein thrombosis and liver decompensation in patients with advanced cirrhosis. Gastroenterology 2012; 143 (05) 1253-1260.e4
  • 40 Carestia A, Davis RP, Davis L, Jenne CN. Inhibition of immunothrombosis does not affect pathogen capture and does not promote bacterial dissemination in a mouse model of sepsis. Platelets. 2019 . DOI: 10.1080/09537104.2019.1704711 [epub ahead of print]
  • 41 Stickel F, Datz C, Hampe J, Bataller R. Pathophysiology and management of alcoholic liver disease: update 2016. Gut Liver 2017; 11 (02) 173-188
  • 42 Rinella ME, Sanyal AJ. Management of NAFLD: a stage-based approach. Nat Rev Gastroenterol Hepatol 2016; 13 (04) 196-205
  • 43 Kubes P, Mehal WZ. Sterile inflammation in the liver. Gastroenterology 2012; 143 (05) 1158-1172
  • 44 Ramaiah SK, Jaeschke H. Role of neutrophils in the pathogenesis of acute inflammatory liver injury. Toxicol Pathol 2007; 35 (06) 757-766
  • 45 Ziol M, Tepper M, Lohez M. , et al. Clinical and biological relevance of hepatocyte apoptosis in alcoholic hepatitis. J Hepatol 2001; 34 (02) 254-260
  • 46 Bukong TN, Cho Y, Iracheta-Vellve A. , et al. Abnormal neutrophil traps and impaired efferocytosis contribute to liver injury and sepsis severity after binge alcohol use. J Hepatol 2018; 69 (05) 1145-1154
  • 47 Talukdar S, Oh DY, Bandyopadhyay G. , et al. Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. Nat Med 2012; 18 (09) 1407-1412
  • 48 van der Windt DJ, Sud V, Zhang H. , et al. Neutrophil extracellular traps promote inflammation and development of hepatocellular carcinoma in nonalcoholic steatohepatitis. Hepatology 2018; 68 (04) 1347-1360
  • 49 Eksteen B, Afford SC, Wigmore SJ, Holt AP, Adams DH. Immune-mediated liver injury. Semin Liver Dis 2007; 27 (04) 351-366
  • 50 Khandpur R, Carmona-Rivera C, Vivekanandan-Giri A. , et al. NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci Transl Med 2013; 5 (178) 178ra40
  • 51 Kessenbrock K, Krumbholz M, Schönermarck U. , et al. Netting neutrophils in autoimmune small-vessel vasculitis. Nat Med 2009; 15 (06) 623-625
  • 52 Gupta S, Kaplan MJ. The role of neutrophils and NETosis in autoimmune and renal diseases. Nat Rev Nephrol 2016; 12 (07) 402-413
  • 53 Moore S, Juo HH, Nielsen CT, Tyden H, Bengtsson AA, Lood C. Neutrophil extracellular traps identify patients at risk of increased disease activity and cardiovascular comorbidity in systemic lupus erythematosus. J Rheumatol 2019; (e-pub ahead of print)
  • 54 Mahmud N, Kaplan DE, Taddei TH, Goldberg DS. Incidence and mortality of acute-on-chronic liver failure using two definitions in patients with compensated cirrhosis. Hepatology 2019; 69 (05) 2150-2163
  • 55 Stravitz RT, Lee WM. Acute liver failure. Lancet 2019; 394 (10201): 869-881
  • 56 Saukkonen K, Lakkisto P, Pettilä V. , et al; Finnsepsis Study Group. Cell-free plasma DNA as a predictor of outcome in severe sepsis and septic shock. Clin Chem 2008; 54 (06) 1000-1007
  • 57 Dwivedi DJ, Toltl LJ, Swystun LL. , et al. Canadian Critical Care Translational Biology Group. Prognostic utility and characterization of cell-free DNA in patients with severe sepsis. Crit Care 2012; 16 (04) R151
  • 58 Blasi A, Patel VC, Adelmeijer J. , et al. Plasma levels of circulating DNA are associated with outcome, but not with activation of coagulation in decompensated cirrhosis and ACLF. JHEP Rep 2019; 1 (03) 179-187
  • 59 Yadav SS, Howell DN, Steeber DA, Harland RC, Tedder TF, Clavien PA. P-Selectin mediates reperfusion injury through neutrophil and platelet sequestration in the warm ischemic mouse liver. Hepatology 1999; 29 (05) 1494-1502
  • 60 Nakazawa D, Kumar SV, Marschner J. , et al. Histones and neutrophil extracellular traps enhance tubular necrosis and remote organ injury in ischemic AKI. J Am Soc Nephrol 2017; 28 (06) 1753-1768
  • 61 Ge L, Zhou X, Ji WJ. , et al. Neutrophil extracellular traps in ischemia-reperfusion injury-induced myocardial no-reflow: therapeutic potential of DNase-based reperfusion strategy. Am J Physiol Heart Circ Physiol 2015; 308 (05) H500-H509
  • 62 von Meijenfeldt FA, Burlage LC, Bos S, Adelmeijer J, Porte RJ, Lisman T. Elevated plasma levels of cell-free DNA during liver transplantation are associated with activation of coagulation. Liver Transpl 2018; 24 (12) 1716-1725
  • 63 Peer V, Abu Hamad R, Berman S, Efrati S. Renoprotective effects of DNAse-I treatment in a rat model of ischemia/reperfusion-induced acute kidney injury. Am J Nephrol 2016; 43 (03) 195-205
  • 64 Gould TJ, Vu TT, Stafford AR. , et al. Cell-free DNA modulates clot structure and impairs fibrinolysis in sepsis. Arterioscler Thromb Vasc Biol 2015; 35 (12) 2544-2553
  • 65 Brill A, Fuchs TA, Savchenko AS. , et al. Neutrophil extracellular traps promote deep vein thrombosis in mice. J Thromb Haemost 2012; 10 (01) 136-144
  • 66 Lisman T, Porte RJ. Rebalanced hemostasis in patients with liver disease: evidence and clinical consequences. Blood 2010; 116 (06) 878-885
  • 67 Lisman T, Stravitz RT. Rebalanced hemostasis in patients with acute liver failure. Semin Thromb Hemost 2015; 41 (05) 468-473
  • 68 Ambrosino P, Tarantino L, Di Minno G. , et al. The risk of venous thromboembolism in patients with cirrhosis. A systematic review and meta-analysis. Thromb Haemost 2017; 117 (01) 139-148
  • 69 Tsochatzis EA, Senzolo M, Germani G, Gatt A, Burroughs AK. Systematic review: portal vein thrombosis in cirrhosis. Aliment Pharmacol Ther 2010; 31 (03) 366-374
  • 70 Jiménez-Alcázar M, Kim N, Fuchs TA. Circulating extracellular DNA: cause or consequence of thrombosis?. Semin Thromb Hemost 2017; 43 (06) 553-561
  • 71 van Montfoort ML, Stephan F, Lauw MN. , et al. Circulating nucleosomes and neutrophil activation as risk factors for deep vein thrombosis. Arterioscler Thromb Vasc Biol 2013; 33 (01) 147-151
  • 72 Novotny J, Chandraratne S, Weinberger T. , et al. Histological comparison of arterial thrombi in mice and men and the influence of Cl-amidine on thrombus formation. PLoS One 2018; 13 (01) e0190728
  • 73 Laridan E, Denorme F, Desender L. , et al. Neutrophil extracellular traps in ischemic stroke thrombi. Ann Neurol 2017; 82 (02) 223-232
  • 74 Loffredo L, Pastori D, Farcomeni A, Violi F. Effects of anticoagulants in patients with cirrhosis and portal vein thrombosis: a systematic review and meta-analysis. Gastroenterology 2017; 153 (02) 480.e1-487.e1
  • 75 Seo JD, Gu JY, Jung HS, Kim YJ, Kim HK. Contact system activation and neutrophil extracellular trap markers: risk factors for portal vein thrombosis in patients with hepatocellular carcinoma. Clin Appl Thromb Hemost. 2019; 25 (e-pub ahead of print)
  • 76 Fridlender ZG, Albelda SM. Tumor-associated neutrophils: friend or foe?. Carcinogenesis 2012; 33 (05) 949-955
  • 77 McDonald B, Spicer J, Giannais B, Fallavollita L, Brodt P, Ferri LE. Systemic inflammation increases cancer cell adhesion to hepatic sinusoids by neutrophil mediated mechanisms. Int J Cancer 2009; 125 (06) 1298-1305
  • 78 Cools-Lartigue J, Spicer J, McDonald B. , et al. Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis. J Clin Invest 2013; 23 (08) 3446-3458
  • 79 Yang LY, Luo Q, Lu L. , et al. Increased neutrophil extracellular traps promote metastasis potential of hepatocellular carcinoma via provoking tumorous inflammatory response. J Hematol Oncol 2020; 13 (01) 3-19
  • 80 Tohme S, Yazdani HO, Al-Khafaji AB. , et al. Neutrophil extracellular traps promote the development and progression of liver metastases after surgical stress. Cancer Res 2016; 76 (06) 1367-1380
  • 81 van Breda SV, Vokalova L, Neugebauer C, Rossi SW, Hahn S, Hasler P. Computational methodologies for the in vitro and in situ quantification of neutrophil extracellular traps. Front Immunol 2019; 10: 1562
  • 82 Intagliata NM, Northup PG. Anticoagulant therapy in patients with cirrhosis. Semin Thromb Hemost 2015; 41 (05) 514-519
  • 83 Lefrancais E, Mallavia B, Zhuo H, Calfee CS, Looney MR. Maladaptive role of neutrophil extracellular traps in pathogen-induced lung injury. JCI Insight 2018; 3 (03) e98178
  • 84 Jung CJ, Yeh CY, Hsu RB, Lee CM, Shun CT, Chia JS. Endocarditis pathogen promotes vegetation formation by inducing intravascular neutrophil extracellular traps through activated platelets. Circulation 2015; 131 (06) 571-581
  • 85 Carestia A, Davis RP, Grosjean H, Lau MW, Jenne CN. Acetylsalicylic acid inhibits intravascular coagulation during Staphylococcus aureus-induced sepsis in mice. Blood 2020; 135 (15) 1281-1286
  • 86 Morrissey JH, Smith SA. Polyphosphate as modulator of hemostasis, thrombosis, and inflammation. J Thromb Haemost 2015; 13 (Suppl. 01) S92-S97
  • 87 Choi SH, Smith SA, Morrissey JH. Polyphosphate accelerates factor V activation by factor XIa. Thromb Haemost 2015; 113 (03) 599-604
  • 88 Gould TJ, Vu TT, Swystun LL. , et al. Neutrophil extracellular traps promote thrombin generation through platelet-dependent and platelet-independent mechanisms. Arterioscler Thromb Vasc Biol 2014; 34 (09) 1977-1984