J Pediatr Genet 2022; 11(01): 068-073
DOI: 10.1055/s-0040-1715479
Case Report

Neurodevelopmental Impairment As the Main Phenotypic Hallmark Associated with the Translocation t(7;10)(7p22.3;q26.11)

Mario Mastrangelo
1   Division of Child Neurology and Infantile Psychiatry, Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
,
Barbara Torres
2   Medical Genetics Division, IRCCS Casa Sollievo della Sofferenza Foundation, San Giovanni Rotondo, Italy
,
Gloria De Vita
1   Division of Child Neurology and Infantile Psychiatry, Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
,
Marina Goldoni
2   Medical Genetics Division, IRCCS Casa Sollievo della Sofferenza Foundation, San Giovanni Rotondo, Italy
,
Agnese De Giorgi
1   Division of Child Neurology and Infantile Psychiatry, Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
,
Laura Bernardini
2   Medical Genetics Division, IRCCS Casa Sollievo della Sofferenza Foundation, San Giovanni Rotondo, Italy
,
Vincenzo Leuzzi
1   Division of Child Neurology and Infantile Psychiatry, Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
› Author Affiliations
Funding None.

Abstract

Reported here is a novel patient carrying an unbalanced t (10q26.11-q26.3; 7p22.3) and presenting with a severe intellectual disability with autistic features, abnormalities of muscle tone, and a drug-responsive epilepsy. The prominence of neurological and neurodevelopmental abnormalities in the clinical phenotype highlights a possible pathogenic role for different genes in the involved regions. Hypothetical mechanisms may include a possible gene dosage effect for DOCK1 and/or haploinsufficiency of PRKAR1B SUN1, ADAP1, and GPER1.

Note

Written parental consent was obtained for publication of this article.


Supplementary Material



Publication History

Received: 30 March 2020

Accepted: 24 June 2020

Article published online:
20 August 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Carter MT, Dyack S, Richer J. Distal trisomy 10q syndrome: phenotypic features in a child with inverted duplicated 10q25.1-q26.3. Clin Dysmorphol 2010; 19 (03) 140-145
  • 2 Mastromoro G, Capalbo A, Guido CA. et al. Small 7p22.3 microdeletion: case report of Snx8 haploinsufficiency and neurological findings. Eur J Med Genet 2020; 63 (04) 103772
  • 3 Al-Sarraj Y, Al-Khair HA, Taha RZ. et al. Distal trisomy 10q syndrome, report of a patient with duplicated q24.31 - qter, autism spectrum disorder and unusual features. Clin Case Rep 2014; 2 (05) 201-205
  • 4 Ghasemi Firouzabadi S, Vameghi R, Kariminejad R. et al. Analysis of copy number variations in patients with autism using cytogenetic and MLPA techniques: report of 16p13.1p13.3 and 10q26.3 duplications. Int J Mol Cell Med 2016; 5 (04) 236-245
  • 5 Yu AC, Zambrano RM, Cristian I. et al. Variable developmental delays and characteristic facial features-A novel 7p22.3p22.2 microdeletion syndrome?. Am J Med Genet A 2017; 173 (06) 1593-1600
  • 6 Peycheva V, Kamenarova K, Ivanova N. et al. Chromosomal microarray analysis of Bulgarian patients with epilepsy and intellectual disability. Gene 2018; 667: 45-55
  • 7 Rivero O, Selten MM, Sich S. et al. Cadherin-13, a risk gene for ADHD and comorbid disorders, impacts GABAergic function in hippocampus and cognition. Transl Psychiatry 2015; 5: e655
  • 8 Devriendt K, Matthijs G, Holvoet M, Schoenmakers E, Fryns JP. Triplication of distal chromosome 10q. J Med Genet 1999; 36 (03) 242-245
  • 9 Sills JA, Buckton KE, Raeburn JAJ. Severe mental retardation in a boy with partial trisomy 10q and partial monosomy 2q. J Med Genet 1976; 13 (06) 507-510
  • 10 Chen CP, Shih JC, Lee CC, Chen LF, Wang W, Wang TY. Prenatal diagnosis of a fetus with distal 10q trisomy. Prenat Diagn 1999; 19 (09) 876-878
  • 11 Bregant L, Gersak K, Veble A. Distal trisomy 10q/partial monosomy 14q: an unusual clinical picture. Genet Couns 2005; 16 (01) 59-63
  • 12 Rahbarimanesh A, Derakhshandeh-Peykar P, Barkhordari A, Ebrahimzadeh-Vesal R, Shamizadeh Kalkhoran S. Partial distal 10q trisomy due to de novo amplification: a new case without furrows or ridges in fingers and palms. Rep Biochem Mol Biol 2013; 1 (02) 87-90
  • 13 Ciuladaite Z, Preiksaitiene E, Utkus A, Kučinskas V. Relatives with opposite chromosome constitutions, rec(10)dup(10p)inv(10)(p15.1q26.12) and rec(10)dup(10q)inv(10)(p15.1q26.12), due to a familial pericentric inversion. Cytogenet Genome Res 2014; 144 (02) 109-113
  • 14 Rendu J, Satre V, Testard H. et al. 7p22.3 microdeletion disrupting SNX8 in a patient presenting with intellectual disability but no tetralogy of Fallot. Am J Med Genet A 2014; 164A (08) 2133-2135
  • 15 Pauli RM, Kirkpatrick SJ, Meisner LF, Mijanovich JR, Spritz RA. Neonatal death in cousins with trisomy 10q and monosomy 4p due to a familial translocation. Clin Genet 1982; 22 (06) 340-347
  • 16 Tüysüz B, Hacihanefioglu S, Silahtaroglu A, Yilmaz S, Deviren A, Cenani A. Two cases of partial trisomy 10q syndrome due to a familial 10;20 translocation. Genet Couns 2000; 11 (04) 355-361
  • 17 Aglan MS, Kamel AK, Helmy NA. Partial trisomy of the distal part of 10q: a report of two Egyptian cases. Genet Couns 2008; 19 (02) 199-209
  • 18 Bartholdi D, Toelle SP, Steiner B, Boltshauser E, Schinzel A, Riegel M. Blepharophimosis and mental retardation (BMR) phenotypes caused by chromosomal rearrangements: description in a boy with partial trisomy 10q and monosomy 4q and review of the literature. Eur J Med Genet 2008; 51 (02) 113-123
  • 19 Wong SL, Chou HH, Chao CN, Leung JH, Chen YH, Hsu CD. Distal 10q trisomy with copy number gain in chromosome region 10q23.1-10q25.1: the Wnt signaling pathway is the most pertinent to the gene content in the region of copy number gain: a case report. BMC Res Notes 2015; 8: 250
  • 20 Yatsenko SA, Kruer MC, Bader PI. et al. Identification of critical regions for clinical features of distal 10q deletion syndrome. Clin Genet 2009; 76 (01) 54-62
  • 21 Laurin M, Huber J, Pelletier A. et al. Rac-specific guanine nucleotide exchange factor DOCK1 is a critical regulator of HER2-mediated breast cancer metastasis. Proc Natl Acad Sci USA 2013; 110 (18) 7434-7439
  • 22 Zeng X, Chen S, Gao Q. et al. The expression of G protein-coupled receptor kinase 5 and its interaction with dendritic marker microtubule-associated protein-2 after status epilepticus. Epilepsy Res 2017; 138: 62-70
  • 23 Niu B, Liu P, Shen M. et al. GRK5 regulates social behavior via suppression of mTORC1 signaling in medial prefrontal cortex. Cereb Cortex 2018; 28 (02) 421-432
  • 24 Laudier B, Epiais T, Pâris A. et al. Molecular and clinical analyses with neuropsychological assessment of a case of del(10)(q26.2qter) without intellectual disability: genomic and transcriptomic combined approach and review of the literature. Am J Med Genet A 2016; 170 (07) 1806-1812
  • 25 Stricker R, Reiser G. Functions of the neuron-specific protein ADAP1 (centaurin-α1) in neuronal differentiation and neurodegenerative diseases, with an overview of structural and biochemical properties of ADAP1. Biol Chem 2014; 395 (11) 1321-1340
  • 26 Wong TH, Chiu WZ, Breedveld GJ. et al; Netherlands Brain Bank, International Parkinsonism Genetics Network. PRKAR1B mutation associated with a new neurodegenerative disorder with unique pathology. Brain 2014; 137 (Pt 5): 1361-1373
  • 27 Zhang X, Lei K, Yuan X. et al. SUN1/2 and Syne/Nesprin-1/2 complexes connect centrosome to the nucleus during neurogenesis and neuronal migration in mice. Neuron 2009; 64 (02) 173-187
  • 28 Moore CD, Thacker EE, Larimore J. et al. The neuronal Arf GAP centaurin alpha1 modulates dendritic differentiation. J Cell Sci 2007; 120 (Pt 15): 2683-2693
  • 29 Altun H, Kurutaş EB, Şahin N, Sınır H, Fındıklı E. Decreased levels of G protein-coupled estrogen receptor in children with autism spectrum disorders. Psychiatry Res 2017; 257: 67-71