J Knee Surg 2021; 34(01): 011-019
DOI: 10.1055/s-0040-1716362
Special Focus Section

Measuring Outcomes in Knee Articular Cartilage Pathology

Sameer R. Oak
1   Department of Orthopaedic Surgery, Sports Medicine, Cleveland Clinic, Cleveland, Ohio
,
Kurt P. Spindler
1   Department of Orthopaedic Surgery, Sports Medicine, Cleveland Clinic, Cleveland, Ohio
› Author Affiliations
Funding K.P.S. reports grants from NIH/NIAMS R01 AR053684, grants from NIH/NIAMS R01 AR074131, grants from NIH/NIAMS R01 AR075422-01, other from NFL, other from Service Excellence, other from Mitek, other from Flexion Therapeutics, other from Samumed, other from Novopeds, outside the submitted work.

Abstract

Measuring outcomes following treatment of knee articular cartilage lesions is crucial to determine the natural history of disease and the efficacy of treatments. Outcome assessments for articular cartilage treatments can be clinical (based on failure, lack of healing, reoperation, need for arthroplasty), radiographic (X-ray, MRI), histologic, or patient reported and functional. The purpose of this review is to discuss the application and properties of patient-reported outcomes (PROs) with a focus on articular cartilage injuries and surgery in the knee. The most frequently used and validated PROs for knee articular cartilage studies include: the Knee injury and Osteoarthritis and Outcome Score, International Knee Documentation Committee Subjective Knee Form, and Lysholm score as knee-specific measures; the Marx Activity Rating Scale and Tegner Activity Scale as activity measures; and EQ-5D and SF-36/12 as generic quality-of-life measures. Incorporating these validated PROs in studies pertaining to knee articular cartilage lesions will allow researchers to fully capture clinically relevant outcomes that are most important to patients.



Publication History

Received: 23 June 2020

Accepted: 21 July 2020

Article published online:
09 September 2020

© 2020. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Dawson J, Doll H, Fitzpatrick R, Jenkinson C, Carr AJ. The routine use of patient reported outcome measures in healthcare settings. BMJ 2010; 340: c186
  • 2 Dinan MA, Compton KL, Dhillon JK. et al. Use of patient-reported outcomes in randomized, double-blind, placebo-controlled clinical trials. Med Care 2011; 49 (04) 415-419
  • 3 Ahmed S, Berzon RA, Revicki DA. et al; International Society for Quality of Life Research. The use of patient-reported outcomes (PRO) within comparative effectiveness research: implications for clinical practice and health care policy. Med Care 2012; 50 (12) 1060-1070
  • 4 Black N. Patient reported outcome measures could help transform healthcare. BMJ 2013; 346: f167
  • 5 Collins NJ, Misra D, Felson DT, Crossley KM, Roos EM. Measures of knee function: International Knee Documentation Committee (IKDC) Subjective Knee Evaluation Form, Knee Injury and Osteoarthritis Outcome Score (KOOS), Knee Injury and Osteoarthritis Outcome Score Physical Function Short Form (KOOS-PS), Knee Outcome Survey Activities of Daily Living Scale (KOS-ADL), Lysholm Knee Scoring Scale, Oxford Knee Score (OKS), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), Activity Rating Scale (ARS), and Tegner Activity Score (TAS). Arthritis Care Res (Hoboken) 2011; 63 (Suppl. 11) S208-S228
  • 6 Wang D, Jones MH, Khair MM, Miniaci A. Patient-reported outcome measures for the knee. J Knee Surg 2010; 23 (03) 137-151
  • 7 Roos EM, Engelhart L, Ranstam J. et al. ICRS recommendation document: patient-reported outcome instruments for use in patients with articular cartilage defects. Cartilage 2011; 2 (02) 122-136
  • 8 Mithoefer K, Acuna M. Clinical outcomes assessment for articular cartilage restoration. J Knee Surg 2013; 26 (01) 31-40
  • 9 Mokkink LB, Terwee CB, Patrick DL. et al. The COSMIN study reached international consensus on taxonomy, terminology, and definitions of measurement properties for health-related patient-reported outcomes. J Clin Epidemiol 2010; 63 (07) 737-745
  • 10 Husted JA, Cook RJ, Farewell VT, Gladman DD. Methods for assessing responsiveness: a critical review and recommendations. J Clin Epidemiol 2000; 53 (05) 459-468
  • 11 Roos EM, Roos HP, Lohmander LS, Ekdahl C, Beynnon BD. Knee injury and osteoarthritis outcome score (KOOS)—development of a self-administered outcome measure. J Orthop Sports Phys Ther 1998; 28 (02) 88-96
  • 12 Roos EM, Lohmander LS. The Knee injury and Osteoarthritis Outcome Score (KOOS): from joint injury to osteoarthritis. Health Qual Life Outcomes 2003; 1 (01) 64
  • 13 Collins NJ, Misra D, Felson DT, Crossley KM, Roos EM. Measures of knee function: International Knee Documentation Committee (IKDC) Subjective Knee Evaluation Form, Knee Injury and Osteoarthritis Outcome Score (KOOS), Knee Injury and Osteoarthritis Outcome Score Physical Function Short Form (KOOS-PS), Knee Outcome Survey Activities of Daily Living Scale (KOS-ADL), Lysholm Knee Scoring Scale, Oxford Knee Score (OKS), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), Activity Rating Scale (ARS), and Tegner Activity Score (TAS). Arthritis Care Res (Hoboken) 2011; 63 (Suppl. 11) S208-S228
  • 14 Engelhart L, Nelson L, Lewis S. et al. Validation of the knee injury and osteoarthritis outcome score subscales for patients with articular cartilage lesions of the knee. Am J Sports Med 2012; 40 (10) 2264-2272
  • 15 Bekkers JEJ, de Windt TS, Raijmakers NJH, Dhert WJA, Saris DBF. Validation of the Knee Injury and Osteoarthritis Outcome Score (KOOS) for the treatment of focal cartilage lesions. Osteoarthritis Cartilage 2009; 17 (11) 1434-1439
  • 16 Vaquero J, Longo UG, Forriol F, Martinelli N, Vethencourt R, Denaro V. Reliability, validity and responsiveness of the Spanish version of the Knee Injury and Osteoarthritis Outcome Score (KOOS) in patients with chondral lesion of the knee. Knee Surg Sports Traumatol Arthrosc 2014; 22 (01) 104-108
  • 17 Ebert JR, Smith A, Wood DJ, Ackland TR. A comparison of the responsiveness of 4 commonly used patient-reported outcome instruments at 5 years after matrix-induced autologous chondrocyte implantation. Am J Sports Med 2013; 41 (12) 2791-2799
  • 18 Brittberg M, Recker D, Ilgenfritz J, Saris DBF. SUMMIT Extension Study Group. Matrix-applied characterized autologous cultured chondrocytes versus microfracture: five-year follow-up of a prospective randomized trial. Am J Sports Med 2018; 46 (06) 1343-1351
  • 19 Crawford DC, DeBerardino TM, Williams III RJ. NeoCart, an autologous cartilage tissue implant, compared with microfracture for treatment of distal femoral cartilage lesions: an FDA phase-II prospective, randomized clinical trial after two years. J Bone Joint Surg Am 2012; 94 (11) 979-989
  • 20 Ebert JR, Janes GC, Wood DJ. Post-operative sport participation and satisfaction with return to activity after matrix-induced autologous chondrocyte implantation in the knee. Int J Sports Phys Ther 2020; 15 (01) 1-11
  • 21 Ebert JR, Smith A, Janes GC, Wood DJ. Association between isokinetic knee strength and perceived function and patient satisfaction with sports and recreational ability after matrix-induced autologous chondrocyte implantation. Orthop J Sports Med 2019; 7 (12) 2325967119885873
  • 22 Fossum V, Hansen AK, Wilsgaard T, Knutsen G. Collagen-covered autologous chondrocyte implantation versus autologous matrix-induced chondrogenesis: a randomized trial comparing 2 methods for repair of cartilage defects of the knee. Orthop J Sports Med 2019; 7 (09) 2325967119868212
  • 23 Gobbi A, Whyte GP. One-stage cartilage repair using a hyaluronic acid-based scaffold with activated bone marrow-derived mesenchymal stem cells compared with microfracture: five-year follow-up. Am J Sports Med 2016; 44 (11) 2846-2854
  • 24 Gobbi A, Whyte GP. Long-term clinical outcomes of one-stage cartilage repair in the knee with hyaluronic acid-based scaffold embedded with mesenchymal stem cells sourced from bone marrow aspirate concentrate. Am J Sports Med 2019; 47 (07) 1621-1628
  • 25 Hashimoto Y, Nishida Y, Takahashi S. et al. Transplantation of autologous bone marrow-derived mesenchymal stem cells under arthroscopic surgery with microfracture versus microfracture alone for articular cartilage lesions in the knee: a multicenter prospective randomized control clinical trial. Regen Ther 2019; 11: 106-113
  • 26 Hindle P, Hendry JL, Keating JF, Biant LC. Autologous osteochondral mosaicplasty or TruFit plugs for cartilage repair. Knee Surg Sports Traumatol Arthrosc 2014; 22 (06) 1235-1240
  • 27 Hoburg A, Löer I, Körsmeier K. et al. Matrix-associated autologous chondrocyte implantation is an effective treatment at midterm follow-up in adolescents and young adults. Orthop J Sports Med 2019; 7 (04) 2325967119841077
  • 28 Kim MS, Chun CH, Wang JH. et al. Microfractures versus a porcine-derived collagen-augmented chondrogenesis technique for treating knee cartilage defects: a multicenter randomized controlled trial. Arthroscopy 2020; 36 (06) 1612-1624
  • 29 Kim MS, Koh IJ, Choi YJ, Pak KH, In Y. Collagen augmentation improves the quality of cartilage repair after microfracture in patients undergoing high tibial osteotomy: a randomized controlled trial. Am J Sports Med 2017; 45 (08) 1845-1855
  • 30 Kraeutler MJ, Belk JW, Purcell JM, McCarty EC. Microfracture versus autologous chondrocyte implantation for articular cartilage lesions in the knee: a systematic review of 5-year outcomes. Am J Sports Med 2018; 46 (04) 995-999
  • 31 Kreuz PC, Müller S, Ossendorf C, Kaps C, Erggelet C. Treatment of focal degenerative cartilage defects with polymer-based autologous chondrocyte grafts: four-year clinical results. Arthritis Res Ther 2009; 11 (02) R33
  • 32 Niemeyer P, Laute V, Zinser W. et al. A prospective, randomized, open-label, multicenter, phase iii noninferiority trial to compare the clinical efficacy of matrix-associated autologous chondrocyte implantation with spheroid technology versus arthroscopic microfracture for cartilage defects of the knee. Orthop J Sports Med 2019; 7 (07) 2325967119854442
  • 33 Robertson WB, Fick D, Wood DJ, Linklater JM, Zheng MH, Ackland TR. MRI and clinical evaluation of collagen-covered autologous chondrocyte implantation (CACI) at two years. Knee 2007; 14 (02) 117-127
  • 34 Słynarski K, de Jong WC, Snow M, Hendriks JAA, Wilson CE, Verdonk P. Single-stage autologous chondrocyte-based treatment for the repair of knee cartilage lesions: two-year follow-up of a prospective single-arm multicenter study. Am J Sports Med 2020; 48 (06) 1327-1337
  • 35 Ulstein S, Årøen A, Røtterud JH, Løken S, Engebretsen L, Heir S. Microfracture technique versus osteochondral autologous transplantation mosaicplasty in patients with articular chondral lesions of the knee: a prospective randomized trial with long-term follow-up. Knee Surg Sports Traumatol Arthrosc 2014; 22 (06) 1207-1215
  • 36 Vanlauwe J, Saris DBF, Victor J, Almqvist KF, Bellemans J, Luyten FP. TIG/ACT/01/2000&EXT Study Group. Five-year outcome of characterized chondrocyte implantation versus microfracture for symptomatic cartilage defects of the knee: early treatment matters. Am J Sports Med 2011; 39 (12) 2566-2574
  • 37 Zaslav K, Cole B, Brewster R. et al; STAR Study Principal Investigators. A prospective study of autologous chondrocyte implantation in patients with failed prior treatment for articular cartilage defect of the knee: results of the Study of the Treatment of Articular Repair (STAR) clinical trial. Am J Sports Med 2009; 37 (01) 42-55
  • 38 Saris D, Price A, Widuchowski W. et al; SUMMIT study group. Matrix-applied characterized autologous cultured chondrocytes versus microfracture: two-year follow-up of a prospective randomized trial. Am J Sports Med 2014; 42 (06) 1384-1394
  • 39 Irrgang JJ, Anderson AF, Boland AL. et al. Development and validation of the international knee documentation committee subjective knee form. Am J Sports Med 2001; 29 (05) 600-613
  • 40 Greco NJ, Anderson AF, Mann BJ. et al. Responsiveness of the International Knee Documentation Committee Subjective Knee Form in comparison to the Western Ontario and McMaster Universities Osteoarthritis Index, modified Cincinnati Knee Rating System, and Short Form 36 in patients with focal articular cartilage defects. Am J Sports Med 2010; 38 (05) 891-902
  • 41 Wang D, Chang B, Coxe FR. et al. Clinically meaningful improvement after treatment of cartilage defects of the knee with osteochondral grafts. Am J Sports Med 2019; 47 (01) 71-81
  • 42 Hambly K, Griva K. IKDC or KOOS? Which measures symptoms and disabilities most important to postoperative articular cartilage repair patients?. Am J Sports Med 2008; 36 (09) 1695-1704
  • 43 Howard JS, Lattermann C, Hoch JM, Mattacola CG, Medina McKeon JM. Comparing responsiveness of six common patient-reported outcomes to changes following autologous chondrocyte implantation: a systematic review and meta-analysis of prospective studies. Cartilage 2013; 4 (02) 97-110
  • 44 Churchill JL, Krych AJ, Lemos MJ, Redd M, Bonner KF. A case series of successful repair of articular cartilage fragments in the knee. Am J Sports Med 2019; 47 (11) 2589-2595
  • 45 Gobbi A, Kon E, Berruto M, Francisco R, Filardo G, Marcacci M. Patellofemoral full-thickness chondral defects treated with Hyalograft-C: a clinical, arthroscopic, and histologic review. Am J Sports Med 2006; 34 (11) 1763-1773
  • 46 Gobbi A, Nunag P, Malinowski K. Treatment of full thickness chondral lesions of the knee with microfracture in a group of athletes. Knee Surg Sports Traumatol Arthrosc 2005; 13 (03) 213-221
  • 47 Imade S, Kumahashi N, Kuwata S. et al. A comparison of patient-reported outcomes and arthroscopic findings between drilling and autologous osteochondral grafting for the treatment of articular cartilage defects combined with anterior cruciate ligament injury. Knee 2013; 20 (05) 354-359
  • 48 Krych AJ, Harnly HW, Rodeo SA, Williams III RJI. Activity levels are higher after osteochondral autograft transfer mosaicplasty than after microfracture for articular cartilage defects of the knee: a retrospective comparative study. J Bone Joint Surg Am 2012; 94 (11) 971-978
  • 49 McNickle AG, L'Heureux DR, Yanke AB, Cole BJ. Outcomes of autologous chondrocyte implantation in a diverse patient population. Am J Sports Med 2009; 37 (07) 1344-1350
  • 50 Pestka JM, Bode G, Salzmann G. et al. Clinical outcomes after cell-seeded autologous chondrocyte implantation of the knee: when can success or failure be predicted?. Am J Sports Med 2014; 42 (01) 208-215
  • 51 Schneider U, Rackwitz L, Andereya S. et al. A prospective multicenter study on the outcome of type I collagen hydrogel-based autologous chondrocyte implantation (CaReS) for the repair of articular cartilage defects in the knee. Am J Sports Med 2011; 39 (12) 2558-2565
  • 52 Wang T, Wang DX, Burge AJ. et al. Clinical and MRI outcomes of fresh osteochondral allograft transplantation after failed cartilage repair surgery in the knee. J Bone Joint Surg Am 2018; 100 (22) 1949-1959
  • 53 Zeifang F, Oberle D, Nierhoff C, Richter W, Moradi B, Schmitt H. Autologous chondrocyte implantation using the original periosteum-cover technique versus matrix-associated autologous chondrocyte implantation: a randomized clinical trial. Am J Sports Med 2010; 38 (05) 924-933
  • 54 Lysholm J, Gillquist J. Evaluation of knee ligament surgery results with special emphasis on use of a scoring scale. Am J Sports Med 1982; 10 (03) 150-154
  • 55 Tegner Y, Lysholm J. Rating systems in the evaluation of knee ligament injuries. Clin Orthop Relat Res 1985; (198) 43-49
  • 56 Briggs KK, Lysholm J, Tegner Y, Rodkey WG, Kocher MS, Steadman JR. The reliability, validity, and responsiveness of the Lysholm score and Tegner activity scale for anterior cruciate ligament injuries of the knee: 25 years later. Am J Sports Med 2009; 37 (05) 890-897
  • 57 Briggs KK, Kocher MS, Rodkey WG, Steadman JR. Reliability, validity, and responsiveness of the Lysholm knee score and Tegner activity scale for patients with meniscal injury of the knee. J Bone Joint Surg Am 2006; 88 (04) 698-705
  • 58 Kocher MS, Steadman JR, Briggs KK, Sterett WI, Hawkins RJ. Reliability, validity, and responsiveness of the Lysholm knee scale for various chondral disorders of the knee. J Bone Joint Surg Am 2004; 86 (06) 1139-1145
  • 59 Smith HJ, Richardson JB, Tennant A. Modification and validation of the Lysholm Knee Scale to assess articular cartilage damage. Osteoarthritis Cartilage 2009; 17 (01) 53-58
  • 60 McCarthy HS, McCall IW, Williams JM. et al. Magnetic resonance imaging parameters at 1 year correlate with clinical outcomes up to 17 years after autologous chondrocyte implantation. Orthop J Sports Med 2018; 6 (08) 2325967118788280
  • 61 Knutsen G, Drogset JO, Engebretsen L. et al. A randomized trial comparing autologous chondrocyte implantation with microfracture. Findings at five years. J Bone Joint Surg Am 2007; 89 (10) 2105-2112
  • 62 Mundi R, Bedi A, Chow L. et al. Cartilage restoration of the knee: a systematic review and meta-analysis of level 1 studies. Am J Sports Med 2016; 44 (07) 1888-1895
  • 63 Solheim E, Hegna J, Strand T, Harlem T, Inderhaug E. Randomized study of long-term (15-17 years) outcome after microfracture versus mosaicplasty in knee articular cartilage defects. Am J Sports Med 2018; 46 (04) 826-831
  • 64 Steadman JR, Briggs KK, Rodrigo JJ, Kocher MS, Gill TJ, Rodkey WG. Outcomes of microfracture for traumatic chondral defects of the knee: average 11-year follow-up. Arthroscopy 2003; 19 (05) 477-484
  • 65 Bisicchia S, Bernardi G, Pagnotta SM, Tudisco C. Micro-fragmented stromal-vascular fraction plus microfractures provides better clinical results than microfractures alone in symptomatic focal chondral lesions of the knee. Knee Surg Sports Traumatol Arthrosc 2020; 28 (06) 1876-1884
  • 66 Raman R, Dutta A, Day N, Sharma HK, Shaw CJ, Johnson GV. Efficacy of Hylan G-F 20 and sodium hyaluronate in the treatment of osteoarthritis of the knee—a prospective randomized clinical trial. Knee 2008; 15 (04) 318-324
  • 67 Knutsen G, Drogset JO, Engebretsen L. et al. A randomized multicenter trial comparing autologous chondrocyte implantation with microfracture: long-term follow-up at 14 to 15 years. J Bone Joint Surg Am 2016; 98 (16) 1332-1339
  • 68 Kvien TK, Heiberg T, Hagen KB. Minimal clinically important improvement/difference (MCII/MCID) and patient acceptable symptom state (PASS): what do these concepts mean?. Ann Rheum Dis. 2007; 66 (Suppl 3): iii40-iii41
  • 69 Muller B, Yabroudi MA, Lynch A. et al. Defining Thresholds for the Patient Acceptable Symptom State for the IKDC Subjective Knee Form and KOOS for Patients Who Underwent ACL Reconstruction. Am J Sports Med. 2016; 44 (11) 2820-2826
  • 70 Vega JF, Jacobs CA, Strnad GJ. et al. Prospective Evaluation of the Patient Acceptable Symptom State to Identify Clinically Successful Anterior Cruciate Ligament Reconstruction. Am J Sports Med 2019; 47 (05) 1159-1167
  • 71 Chahla J, Kunze KN, Tauro T. et al. Defining the Minimal Clinically Important Difference and Patient Acceptable Symptom State for Microfracture of the Knee: A Psychometric Analysis at Short-term Follow-up. Am J Sports Med. 2020; 48 (04) 876-883
  • 72 Marx RG, Stump TJ, Jones EC, Wickiewicz TL, Warren RF. Development and evaluation of an activity rating scale for disorders of the knee. Am J Sports Med 2001; 29 (02) 213-218
  • 73 Hambly K. The use of the Tegner activity scale for articular cartilage repair of the knee: a systematic review. Knee Surg Sports Traumatol Arthrosc 2011; 19 (04) 604-614
  • 74 Schilling C, Dowsey MM, Clarke PM, Choong PF. Using patient-reported outcomes for economic evaluation: getting the timing right. Value Health 2016; 19 (08) 945-950
  • 75 Rabin R, de Charro F. EQ-5D: a measure of health status from the EuroQol Group. Ann Med 2001; 33 (05) 337-343
  • 76 Shaw JW, Johnson JA, Coons SJ. US valuation of the EQ-5D health states: development and testing of the D1 valuation model. Med Care 2005; 43 (03) 203-220
  • 77 McHorney CA, Ware Jr JE, Raczek AE. The MOS 36-Item Short-Form Health Survey (SF-36): II. Psychometric and clinical tests of validity in measuring physical and mental health constructs. Med Care 1993; 31 (03) 247-263
  • 78 Ware Jr JEJ, Sherbourne CD. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care 1992; 30 (06) 473-483
  • 79 Ware Jr J, Kosinski M, Keller SDA. A 12-Item Short-Form Health Survey: construction of scales and preliminary tests of reliability and validity. Med Care 1996; 34 (03) 220-233
  • 80 SF-36 & SF-36v2 Health Survey. Accessed May 13, 2020 at: https://www.optum.com/solutions/life-sciences/answer-research/patient-insights/sf-health-surveys/sf-36v2-health-survey.html
  • 81 Busija L, Pausenberger E, Haines TP, Haymes S, Buchbinder R, Osborne RH. Adult measures of general health and health-related quality of life: Medical Outcomes Study Short Form 36-Item (SF-36) and Short Form 12-Item (SF-12) Health Surveys, Nottingham Health Profile (NHP), Sickness Impact Profile (SIP), Medical Outcomes Study Short Form 6D (SF-6D), Health Utilities Index Mark 3 (HUI3), Quality of Well-Being Scale (QWB), and Assessment of Quality of Life (AQoL). Arthritis Care Res (Hoboken) 2011; 63 (Suppl. 11) S383-S412
  • 82 Selim AJ, Rogers W, Fleishman JA. et al. Updated U.S. population standard for the Veterans RAND 12-item Health Survey (VR-12). Qual Life Res 2009; 18 (01) 43-52
  • 83 Hays RD, Sherbourne CD, Mazel RM. The rand 36-item health survey 1.0. Health Econ 1993; 2 (03) 217-227
  • 84 Fries JF, Bruce B, Cella D. The promise of PROMIS: using item response theory to improve assessment of patient-reported outcomes. Clin Exp Rheumatol 2005; 23 (05) (Suppl. 39) S53-S57
  • 85 Shamrock AG, Wolf BR, Ortiz SF. et al. Preoperative validation of the patient-reported outcomes measurement information system in patients with articular cartilage defects of the knee. Arthroscopy 2020; 36 (02) 516-520
  • 86 Scott EJ, Westermann R, Glass NA, Hettrich C, Wolf BR, Bollier MJ. Performance of the PROMIS in patients after anterior cruciate ligament reconstruction. Orthop J Sports Med 2018; 6 (05) 2325967118774509