CC BY-NC-ND 4.0 · Organic Materials 2020; 02(04): 253-281
DOI: 10.1055/s-0040-1716488
Review

Recent Progress in Emerging Near-Infrared Emitting Materials for Light-Emitting Diode Applications

a   Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
b   School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
,
a   Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
b   School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
› Author Affiliations
Funding Information The authors thank the National Key R&D Program of China (2019YFA0705900 and 2017YFA0204701) and the National Natural Science Foundation of China (21572234, 21661132006, and 91833304) for their financial support.


Abstract

In view of the wide applications of near-infrared (NIR) light in night vision, security, medicine, sensors, telecommunications, and military applications, and the scarcity of high-efficiency NIR-emitting materials, development of alternative NIR-emitting materials is urgently required. In this review, we focus on three kinds of emerging NIR-emitting materials used in light-emitting diodes (LEDs), namely organic materials, inorganic quantum dot (QD) materials, and organic–inorganic hybrid perovskite materials; the corresponding devices are organic LEDs, QD LEDs, and perovskite LEDs. The advantages and disadvantages of the three kinds of materials are discussed, some representative works are reviewed, and a brief outlook for these materials is provided.



Publication History

Received: 16 June 2020

Accepted: 28 July 2020

Article published online:
17 October 2020

© 2020. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany