J Knee Surg 2022; 35(06): 676-683
DOI: 10.1055/s-0040-1716504
Original Article

Anatomical Risk Factors for Anterior Cruciate Ligament Injury Are Not Important As Patellar Instability Risk Factors in Patients with Acute Knee Injury

Riccardo Gomes Gobbi
1   Instituto de Ortopedia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
,
Livia Dau Videira
1   Instituto de Ortopedia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
,
Anderson Albuquerque dos Santos
1   Instituto de Ortopedia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
,
Marcello Barni Saruhashi
1   Instituto de Ortopedia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
,
Bruno Romano Lucarini
2   Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
,
1   Instituto de Ortopedia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
,
Pedro Nogueira Giglio
1   Instituto de Ortopedia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
,
José Ricardo Pécora
1   Instituto de Ortopedia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
,
Gilberto Luis Camanho
1   Instituto de Ortopedia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
,
3   Department of Orthopaedic Surgery, William Beaumont Hospital, Royal Oak, Michigan
› Author Affiliations

Abstract

To compare in magnetic resonance imaging the anatomical risk factors for anterior cruciate ligament (ACL) injury and patellar dislocation among patients who suffered acute knee injury, 105 patients with acute knee injury resulting in 38 patellar dislocations (patella group), 35 ACL injuries (ACL group), and 32 meniscus or medial collateral ligament injuries (control group) were included. These groups were compared for risk factors for patellar dislocation (patellar height, trochlear dysplasia, and quadriceps angle of action) and for ACL injury (intercondylar width, posterior inclination of tibial plateaus, and depth of the medial plateau). Univariate analysis found statistically significant differences (p < 0.05) between the patella and ACL groups in patellar height (Caton-Deschamps [CD] 1.23 vs. 1.07), trochlear facet asymmetry (55 vs. 68%), PTTG (13.08 vs. 8.01 mm), and the patellar tip and trochlear groove (PTTG) angle (29.5 vs. 13.71 degrees). The patella group also differed from control in medial plateau inclination (4.8 vs. 1.87 degrees), patellar height (CD 1.23 vs 1.08), trochlear facet asymmetry (55 vs. 69%), lateral trochlear inclination (17.11 vs. 20.65 degrees), trochlear depth (4.1 vs. 6.05 mm), PTTG (13.08 vs. 9.85 mm), and the PTTG angle (29.5 vs. 17.88 degrees). The ACL and control groups were similar in all measures. Multivariate analysis found the following significant determinants between the Patella and Control groups: patellar height (CD index, odds ratio [OR]: 80.13, p = 0.015), trochlear anatomy (asymmetry of facets M/L, OR: 1.06, p = 0.031) and quadriceps action angle (PTTG angle, OR: 1.09, p = 0.016); between the ACL and control groups: PTTG angle (OR: 0.936, p = 0.04) and female gender (OR: 3.876, p = 0.032); and between the patella and ACL groups, the CD index (OR: 67.62, p = 0.026), asymmetry of the M/L facets (OR: 1.07, p = 0.011) and PTTG angle (OR: 1.16, p < 0.001). In conclusion, in patients with acute knee injury, the anatomical factors patellar height, trochlear dysplasia, and quadriceps angle of action were related to the occurrence of patellar dislocation. None of the anatomical factors studied was related to the occurrence of anterior cruciate ligament injury.



Publication History

Received: 06 April 2020

Accepted: 29 July 2020

Article published online:
17 September 2020

© 2020. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Beaty C. Campbell's Operative Orthopedics. 11th ed. Elsevier; 2009
  • 2 LaPrade RF, Burnett II QM. Femoral intercondylar notch stenosis and correlation to anterior cruciate ligament injuries. A prospective study. Am J Sports Med 1994; 22 (02) 198-202 , discussion 203
  • 3 Lund-Hanssen H, Gannon J, Engebretsen L, Holen KJ, Anda S, Vatten L. Intercondylar notch width and the risk for anterior cruciate ligament rupture. A case-control study in 46 female handball players. Acta Orthop Scand 1994; 65 (05) 529-532
  • 4 Shelbourne KD, Davis TJ, Klootwyk TE. The relationship between intercondylar notch width of the femur and the incidence of anterior cruciate ligament tears. A prospective study. Am J Sports Med 1998; 26 (03) 402-408
  • 5 Stijak L, Blagojević Z, Santrač-Stijak G, Spasojević G, Herzog R, Filipović B. Predicting ACL rupture in the population actively engaged in sports activities based on anatomical risk factors. Orthopedics 2011; 34 (06) 431
  • 6 Uhorchak JM, Scoville CR, Williams GN, Arciero RA, St Pierre P, Taylor DC. Risk factors associated with noncontact injury of the anterior cruciate ligament: a prospective four-year evaluation of 859 West Point cadets. Am J Sports Med 2003; 31 (06) 831-842
  • 7 Hoteya K, Kato Y, Motojima S. et al Association between intercondylar notch narrowing and bilateral anterior cruciate ligament injuries in athletes. Arch Orthop Trauma Surg 2011; 131 (03) 371-376
  • 8 Brandon ML, Haynes PT, Bonamo JR, Flynn MI, Barrett GR, Sherman MF. The association between posterior-inferior tibial slope and anterior cruciate ligament insufficiency. Arthroscopy 2006; 22 (08) 894-899
  • 9 Stijak L, Herzog RF, Schai P. Is there an influence of the tibial slope of the lateral condyle on the ACL lesion? A case-control study. Knee Surg Sports Traumatol Arthrosc 2008; 16 (02) 112-117
  • 10 Bisson LJ, Gurske-DePerio J. Axial and sagittal knee geometry as a risk factor for noncontact anterior cruciate ligament tear: a case-control study. Arthroscopy 2010; 26 (07) 901-906
  • 11 Hashemi J, Chandrashekar N, Mansouri H. et al Shallow medial tibial plateau and steep medial and lateral tibial slopes: new risk factors for anterior cruciate ligament injuries. Am J Sports Med 2010; 38 (01) 54-62
  • 12 Todd MS, Lalliss S, Garcia E, DeBerardino TM, Cameron KL. The relationship between posterior tibial slope and anterior cruciate ligament injuries. Am J Sports Med 2010; 38 (01) 63-67
  • 13 Dejour H, Walch G, Nove-Josserand L, Guier C. Factors of patellar instability: an anatomic radiographic study. Knee Surg Sports Traumatol Arthrosc 1994; 2 (01) 19-26
  • 14 Arendt EA, Fithian DC, Cohen E. Current concepts of lateral patella dislocation. Clin Sports Med 2002; 21 (03) 499-519
  • 15 Balcarek P, Jung K, Ammon J. et al Anatomy of lateral patellar instability: trochlear dysplasia and tibial tubercle-trochlear groove distance is more pronounced in women who dislocate the patella. Am J Sports Med 2010; 38 (11) 2320-2327
  • 16 Dejour D, Saggin RF. Insall and Scott: Surgery of the Knee. 6th ed. Churchill Livingstone: 2012
  • 17 Nikku R, Nietosvaara Y, Aalto K, Kallio PE. The mechanism of primary patellar dislocation: trauma history of 126 patients. Acta Orthop 2009; 80 (04) 432-434
  • 18 Caton J, Deschamps G, Chambat P, Lerat JL, Dejour H. [Patella infera. Apropos of 128 cases] Rev Chir Orthop Repar Appar Mot 1982; 68 (05) 317-325
  • 19 Biedert RM, Albrecht S. The patellotrochlear index: a new index for assessing patellar height. Knee Surg Sports Traumatol Arthrosc 2006; 14 (08) 707-712
  • 20 Carrillon Y, Abidi H, Dejour D, Fantino O, Moyen B, Tran-Minh VA. Patellar instability: assessment on MR images by measuring the lateral trochlear inclination-initial experience. Radiology 2000; 216 (02) 582-585
  • 21 Pfirrmann CW, Zanetti M, Romero J, Hodler J. Femoral trochlear dysplasia: MR findings. Radiology 2000; 216 (03) 858-864
  • 22 Hinckel BB, Gobbi RG, Kihara Filho EN. et al Why are bone and soft tissue measurements of the TT-TG distance on MRI different in patients with patellar instability?. Knee Surg Sports Traumatol Arthrosc 2017; 25 (10) 3053-3060
  • 23 Hinckel BB, Gobbi RG, Filho EN. et al Are the osseous and tendinous-cartilaginous tibial tuberosity-trochlear groove distances the same on CT and MRI?. Skeletal Radiol 2015; 44 (08) 1085-1093
  • 24 Hinckel BB, Gobbi RG, Kihara Filho EN, Demange MK, Pécora JR, Camanho GL. Patellar tendon-trochlear groove angle measurement: a new method for patellofemoral rotational analyses. Orthop J Sports Med 2015; 3 (09) 2325967115601031
  • 25 Ali SA, Helmer R, Terk MR. Patella alta: lack of correlation between patellotrochlear cartilage congruence and commonly used patellar height ratios. AJR Am J Roentgenol 2009; 193 (05) 1361-1366
  • 26 Jaquith BP, Parikh SN. Predictors of recurrent patellar instability in children and adolescents after first-time dislocation. J Pediatr Orthop 2017; 37 (07) 484-490
  • 27 Charles MD, Haloman S, Chen L, Ward SR, Fithian D, Afra R. Magnetic resonance imaging-based topographical differences between control and recurrent patellofemoral instability patients. Am J Sports Med 2013; 41 (02) 374-384
  • 28 Steensen RN, Bentley JC, Trinh TQ, Backes JR, Wiltfong RE. The prevalence and combined prevalences of anatomic factors associated with recurrent patellar dislocation: a magnetic resonance imaging study. Am J Sports Med 2015; 43 (04) 921-927
  • 29 Köhlitz T, Scheffler S, Jung T. et al Prevalence and patterns of anatomical risk factors in patients after patellar dislocation: a case control study using MRI. Eur Radiol 2013; 23 (04) 1067-1074
  • 30 Dejour D, Le Coultre B. Osteotomies in patello-femoral instabilities. Sports Med Arthrosc Rev 2007; 15 (01) 39-46