J Knee Surg 2020; 33(11): 1088-1099
DOI: 10.1055/s-0040-1716719
Special Focus Section

Preoperative MRI of Articular Cartilage in the Knee: A Practical Approach

Russell C. Fritz
1   National Orthopaedic Imaging Associates, Greenbrae, California
,
Akshay S. Chaudhari
2   Department of Radiology, Stanford University, Stanford, California
,
3   Department of Radiology, Musculoskeletal Imaging, Stanford University School of Medicine, Stanford, California
› Institutsangaben
Funding The study has received funding support from National Institutes of Health (NIH); contract grant numbers NIH R01 AR063643, R01 EB002524, K24 AR062068, and P41 EB015891.

Abstract

Articular cartilage of the knee can be evaluated with high accuracy by magnetic resonance imaging (MRI) in preoperative patients with knee pain, but image quality and reporting are variable. This article discusses the normal MRI appearance of articular cartilage as well as the common MRI abnormalities of knee cartilage that may be considered for operative treatment. This article focuses on a practical approach to preoperative MRI of knee articular cartilage using routine MRI techniques. Current and future directions of knee MRI related to articular cartilage are also discussed.

Authors’ Contributions

A. C. has provided consulting services to SkopeMR, Inc., Subtle Medical, Chondrometrics GmbH, Image Analysis Group, Edge Analytics, and Culvert Engineering; and is a shareholder of Subtle Medical, LVIS Corporation, and Brain Key.




Publikationsverlauf

Eingereicht: 02. Mai 2020

Angenommen: 09. August 2020

Artikel online veröffentlicht:
29. Oktober 2020

Thieme Medical Publishers
333 Seventh Avenue, New York, NY 10001, USA.

 
  • References

  • 1 Reginster JY. Introduction: historical and current perspectives on osteoarthritis. In: Arden N, Blanco FJ, Bruyère A. et al. Atlas of Osteoarthritis. 2nd ed.. London: Springer Healthcare; 2018: 11-17
  • 2 Dequeker J, Luyten FP. The history of osteoarthritis-osteoarthrosis. Ann Rheum Dis 2008; 67 (01) 5-10
  • 3 Li KC, Henkelman RM, Poon PY, Rubenstein J. MR imaging of the normal knee. J Comput Assist Tomogr 1984; 8 (06) 1147-1154
  • 4 PubMed. Bethesda, MD: U.S. National Library of Medicine, National Institutes of Health, Health & Human Services. . Available at: https://www.ncbi.nlm.nih.gov/pubmed . Accessed May 1, 2020
  • 5 Zwaan L, Schiff GD, Singh H. Advancing the research agenda for diagnostic error reduction. BMJ Qual Saf 2013; 22 (Suppl. 02) ii52-ii57
  • 6 Cheng Q, Zhao FC. Comparison of 1.5- and 3.0-T magnetic resonance imaging for evaluating lesions of the knee: a systematic review and meta-analysis (PRISMA-compliant article). Medicine (Baltimore) 2018; 97 (38) e12401
  • 7 Potter HG, Linklater JM, Allen AA, Hannafin JA, Haas SB. Magnetic resonance imaging of articular cartilage in the knee. An evaluation with use of fast-spin-echo imaging. J Bone Joint Surg Am 1998; 80 (09) 1276-1284
  • 8 Jungmann PM, Agten CA, Pfirrmann CW, Sutter R. Advances in MRI around metal. J Magn Reson Imaging 2017; 46 (04) 972-991
  • 9 Kim HT, Lim JN, Chon KS. Reduction of metal artifact by using VAT-SEMAC in MRI. J Korean Soc Radiol 2019; 13 (02) 227-232
  • 10 Runge VM, Richter JK, Heverhagen JT. Motion in magnetic resonance: new paradigms for improved clinical diagnosis. Invest Radiol 2019; 54 (07) 383-395
  • 11 Johnson PM, Recht MP, Knoll F. Improving the speed of MRI with artificial intelligence. Semin Musculoskeletal Radiol 2020; 24 (01) 012-020
  • 12 Liu F, Zhou Z, Samsonov A. et al. Deep learning approach for evaluating knee MR images: achieving high diagnostic performance for cartilage lesion detection. Radiology 2018; 289 (01) 160-169
  • 13 Eagle S, Potter HG, Koff MF. Morphologic and quantitative magnetic resonance imaging of knee articular cartilage for the assessment of post-traumatic osteoarthritis. J Orthop Res 2017; 35 (03) 412-423
  • 14 Shakoor D, Guermazi A, Kijowski R. et al. Diagnostic performance of three-dimensional MRI for depicting cartilage defects in the knee: a meta-analysis. Radiology 2018; 289 (01) 71-82
  • 15 Jungmann PM, Welsch GH, Brittberg M. et al. Magnetic resonance imaging score and classification system (AMADEUS) for assessment of preoperative cartilage defect severity. Cartilage 2017; 8 (03) 272-282
  • 16 Jones KJ, Sheppard WL, Arshi A, Hinckel BB, Sherman SL. Articular cartilage lesion characteristic reporting is highly variable in clinical outcomes studies of the knee. Cartilage 2019; 10 (03) 299-304
  • 17 Nomura E, Inoue M, Kurimura M. Chondral and osteochondral injuries associated with acute patellar dislocation. Arthroscopy 2003; 19 (07) 717-721
  • 18 Boutin RD, Januario JA, Newberg AH, Gundry CR, Newman JS. MR imaging features of osteochondritis dissecans of the femoral sulcus. AJR Am J Roentgenol 2003; 180 (03) 641-645
  • 19 Guermazi A, Alizai H, Crema MD, Trattnig S, Regatte RR, Roemer FW. Compositional MRI techniques for evaluation of cartilage degeneration in osteoarthritis. Osteoarthritis Cartilage 2015; 23 (10) 1639-1653
  • 20 Bashir A, Gray ML, Boutin RD, Burstein D. Glycosaminoglycan in articular cartilage: in vivo assessment with delayed Gd(DTPA)(2-)-enhanced MR imaging. Radiology 1997; 205 (02) 551-558
  • 21 Baum T, Joseph GB, Karampinos DC, Jungmann PM, Link TM, Bauer JS. Cartilage and meniscal T2 relaxation time as non-invasive biomarker for knee osteoarthritis and cartilage repair procedures. Osteoarthritis Cartilage 2013; 21 (10) 1474-1484
  • 22 Chaudhari AS, Kogan F, Pedoia V, Majumdar S, Gold GE, Hargreaves BA. Rapid knee MRI acquisition and analysis techniques for imaging osteoarthritis. J Magn Reson Imaging 2019;
  • 23 Mosher TJ, Dardzinski BJ. Cartilage MRI T2 relaxation time mapping: overview and applications. Semin Musculoskelet Radiol 2004; 8 (04) 355-368
  • 24 Chaudhari AS, Black MS, Eijgenraam S. et al. Five-minute knee MRI for simultaneous morphometry and T2 relaxometry of cartilage and meniscus and for semiquantitative radiological assessment using double-echo in steady-state at 3T. J Magn Reson Imaging 2018; 47 (05) 1328-1341
  • 25 Sveinsson B, Chaudhari AS, Gold GE, Hargreaves BA. A simple analytic method for estimating T2 in the knee from DESS. Magn Reson Imaging 2017; 38: 63-70
  • 26 Eijgenraam SM, Chaudhari AS, Reijman M. et al. Time-saving opportunities in knee osteoarthritis: T2 mapping and structural imaging of the knee using a single 5-min MRI scan. Eur Radiol 2020; 30 (04) 2231-2240
  • 27 Chaudhari AS, Stevens KJ, Sveinsson B. et al. Combined 5-minute double-echo in steady-state with separated echoes and 2-minute proton-density-weighted 2D FSE sequence for comprehensive whole-joint knee MRI assessment. J Magn Reson Imaging 2019; 49 (07) e183-e194
  • 28 Kogan F, Levine E, Chaudhari AS. et al. Simultaneous bilateral-knee MR imaging. Magn Reson Med 2018; 80 (02) 529-537
  • 29 Kim J, Kwon Lee J, Mu Lee K, Lee JK, Lee KM. Accurate image super-resolution using very deep convolutional networks. Paper presented at: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV: IEEE; 2016: 1646-1654
  • 30 Chaudhari AS, Fang Z, Kogan F. et al. Super-resolution musculoskeletal MRI using deep learning. Magn Reson Med 2018; 80 (05) 2139-2154
  • 31 Chaudhari AS, Stevens KJ, Wood JP. et al. Utility of deep learning super-resolution in the context of osteoarthritis MRI biomarkers. J Magn Reson Imaging 2020; 51 (03) 768-779
  • 32 Chaudhari A, Fang Z, Lee J Hyung, Gold G, Hargreaves B. Deep learning super-resolution enables rapid simultaneous morphological and quantitative magnetic resonance imaging. In: Knoll F, Maier A, Rueckert D. . (eds) Machine Learning for Medical Image Reconstruction. MLMIR 2018. Lecture Notes in Computer Science, Vol 11074. Springer; Cham: . Available at: https://doi.org/10.1007/978-3-030-00129-2_1
  • 33 Norman B, Pedoia V, Majumdar S. Use of 2D U-Net convolutional neural networks for automated cartilage and meniscus segmentation of knee MR imaging data to determine relaxometry and morphometry. Radiology 2018; 288 (01) 177-185
  • 34 Desai AD, Gold GE, Hargreaves BA, Chaudhari AS. Technical considerations for semantic segmentation in MRI using convolutional neural networks. arXiv preprint 2019 arXiv. 1902.01977