Subscribe to RSS
DOI: 10.1055/s-0040-1716721
Therapeutic Anticoagulation Delays Death in COVID-19 Patients: Cross-Sectional Analysis of a Prospective Cohort
Abstract
A hypercoagulable state has been described in coronavirus disease 2019 (COVID-19) patients. Others have reported a survival advantage with prophylactic anticoagulation (pAC) and therapeutic anticoagulation (tAC), but these retrospective analyses have important limitations such as confounding by indication. We studied the impact of tAC and pAC compared with no anticoagulation (AC) on time to death in COVID-19. We performed a cross-sectional analysis of 127 deceased COVID-19 patients and compared time to death in those who received tAC (n = 67), pAC (n = 47), and no AC (n = 13). Median time to death was longer with higher doses of AC (11 days for tAC, 8 days for pAC, and 4 days for no AC, p < 0.001). In multivariate analysis, AC was associated with longer time to death, both at prophylactic (hazard ratio [HR] = 0.29; 95% confidence interval [CI]: 0.15 to 0.58; p < 0.001) and therapeutic doses (HR = 0.15; 95% CI: 0.07 to 0.32; p < 0.001) compared with no AC. Bleeding rates were similar among tAC and remaining patients (19 vs. 18%; p = 0.877). In deceased COVID-19 patients, AC was associated with a delay in death in a dose-dependent manner. Randomized trials are required to prospectively investigate the benefit and safety of higher doses of AC in this population.
Authors' Contributions
All authors contributed to data collection, and manuscript revision. F.I. and G.N. analyzed data and drafted the manuscript. E.D. contributed to data analysis. All authors approved the final version.
Publication History
Received: 15 June 2020
Accepted: 11 August 2020
Article published online:
26 September 2020
© 2020. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/).
Georg Thieme Verlag KG
Stuttgart · New York
-
References
- 1 Zhu N, Zhang D, Wang W. et al. China Novel Coronavirus Investigating and Research Team. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020; 382 (08) 727-733
- 2 WHO Director-General's remarks at the media briefing on 2019-nCoV on 11 February 2020. Available at: https://www.who.int/dg/speeches/detail/who-director-general-s-remarks-at-the-media-briefing-on-2019-ncov-on-11-february-2020 . Accessed August 27, 2020
- 3 Huang C, Wang Y, Li X. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395 (10223): 497-506
- 4 Thachil J, Tang N, Gando S. et al. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J Thromb Haemost 18 (05) 1023-1026
- 5 Terpos E, Ntanasis-Stathopoulos I, Elalamy I. et al. Hematological findings and complications of COVID-19. Am J Hematol 2020; 95 (07) 834-847
- 6 Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost 2020; 18 (04) 844-847
- 7 Panigada M, Bottino N, Tagliabue P. et al. Hypercoagulability of COVID-19 patients in Intensive care unit. a report of thromboelastography findings and other parameters of hemostasis. J Thromb Haemost 2020; 18 (07) 1738-1742
- 8 Ranucci M, Ballotta A, Di Dedda U. et al. The procoagulant pattern of patients with COVID-19 acute respiratory distress syndrome. J Thromb Haemost 2020; 18 (07) 1747-1751
- 9 Dolhnikoff M, Duarte-Neto AN, de Almeida Monteiro RA. et al. Pathological evidence of pulmonary thrombotic phenomena in severe COVID-19. J Thromb Haemost 2020; 18 (06) 1517-1519
- 10 Fox SE, Akmatbekov A, Harbert JL, Li G, Brown JQ, Heide RSV. Pulmonary and cardiac pathology in COVID-19: the first autopsy series from New Orleans. Lancet 2020; 8 (07) P681-P686
- 11 Magro C, Mulvey JJ, Berlin D. et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: a report of five cases. Transl Res J Lab Clin Med 2020; 220: 1-13
- 12 Klok FA, Kruip MJHA, van der Meer NJM. et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res 2020; 220: 1-13
- 13 Tang N, Bai H, Chen X, Gong J, Li D, Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost 2020; 18 (05) 1094-1099
- 14 Paranjpe I, Fuster V, Lala A. et al. Association of treatment dose anticoagulation with in-hospital survival among hospitalized patients with COVID-19. J Am Coll Cardiol 2020; 76 (01) 122-124
- 15 Marietta M, Ageno W, Artoni A. et al. COVID-19 and haemostasis: a position paper from Italian Society on Thrombosis and Haemostasis (SISET). Blood Transfus 2020; 18 (03) 167-169
- 16 Casini A, Alberio L, Angelillo-Scherrer A. et al. Thromboprophylaxis and laboratory monitoring for in-hospital patients with COVID-19 - a Swiss consensus statement by the Working Party Hemostasis. Swiss Med Wkly 2020; 150: w20247
- 17 Wang J, Hajizadeh N, Moore EE. et al. Tissue plasminogen activator (tPA) treatment for COVID-19 associated acute respiratory distress syndrome (ARDS): a case series. J Thromb Haemost 2020; 18 (07) 1752-1755
- 18 Thachil J. The versatile heparin in COVID-19. J Thromb Haemost 18 (07) 1752-1755
- 19 Schulman S, Kearon C. Subcommittee on Control of Anticoagulation of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. Definition of major bleeding in clinical investigations of antihemostatic medicinal products in non-surgical patients. J Thromb Haemost 2005; 3 (04) 692-694
- 20 Wu C, Chen X, Cai Y. et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med 2020; 180 (07) 1-11
- 21 Russell CD, Millar JE, Baillie JK. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet 2020; 395 (10223): 473-475
- 22 Shang L, Zhao J, Hu Y, Du R, Cao B. On the use of corticosteroids for 2019-nCoV pneumonia. Lancet 2020; 395 (10225): 683-684
- 23 Ni YN, Chen G, Sun J, Liang BM, Liang ZA. The effect of corticosteroids on mortality of patients with influenza pneumonia: a systematic review and meta-analysis. Crit Care 2019; 23 (01) 99