Semin Thromb Hemost 2021; 47(01): 043-052
DOI: 10.1055/s-0040-1718890
Review Article

Mechanisms of Bone Remodeling Disorder in Hemophilia

Hanshi Wang
1   Department of Sports Medicine and Joint Surgery, The People's Hospital of China Medical University, Shenyang, People's Republic of China
,
Xizhuang Bai
1   Department of Sports Medicine and Joint Surgery, The People's Hospital of China Medical University, Shenyang, People's Republic of China
› Institutsangaben
Funding This study was supported by the National Natural Science Foundation of China (grant No. 81671811). The funding source had no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; and in the decision to submit the article for publication.

Abstract

Hemophilia is caused by a lack of antihemophilic factor(s), for example, factor VIII (FVIII; hemophilia A) and factor IX (FIX; hemophilia B). Low bone mass is widely reported in epidemiological studies of hemophilia, and patients with hemophilia are at an increased risk of fracture. The detailed etiology of bone homeostasis imbalance in hemophilia is unclear. Clinical and experimental studies show that FVIII and FIX are involved in bone remodeling. However, it is likely that antihemophilic factors affect bone biology through thrombin pathways rather than via their own intrinsic properties. In addition, among patients with hemophilia, there are pathophysiological processes in several systems that might contribute to bone loss. This review summarizes studies on the association between hemophilia and bone remodeling, and might shed light on the challenges facing the care and prevention of osteoporosis and fracture in patients with hemophilia.



Publikationsverlauf

Artikel online veröffentlicht:
23. Dezember 2020

© 2020. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Schramm W. The history of haemophilia - a short review. Thromb Res 2014; 134 (Suppl. 01) S4-S9
  • 2 Hynes HE, Owen Jr CA, Bowie EJ, Thompson Jr JH. Development of the present concept of hemophilia. Mayo Clin Proc 1969; 44 (03) 193-206
  • 3 Biggs R, Douglas AS, MacFarlane RG, Dacie JV, Pitney WR. , Merskey, Christmas disease: a condition previously mistaken for haemophilia. BMJ 1952; 2 (4799): 1378-1382
  • 4 Franchini M, Mannucci PM. Haemophilia B is clinically less severe than haemophilia A: further evidence. Blood Transfus 2018; 16 (02) 121-122
  • 5 Berntorp E, Shapiro AD. Modern haemophilia care. Lancet 2012; 379 (9824): 1447-1456
  • 6 Samuelson Bannow B, Recht M, Négrier C. et al. Factor VIII: long-established role in haemophilia A and emerging evidence beyond haemostasis. Blood Rev 2019; 35: 43-50
  • 7 Gailani D, Geng Y, Verhamme I. et al. The mechanism underlying activation of factor IX by factor XIa. Thromb Res 2014; 133 (Suppl. 01) S48-S51
  • 8 Gallacher SJ, Deighan C, Wallace AM. et al. Association of severe haemophilia A with osteoporosis: a densitometric and biochemical study. Q J Med 1994; 87 (03) 181-186
  • 9 Mansouritorghabeh H, Rezaieyazdi Z, Saadati N, Saghafi M, Mirfeizi Z, Rezai J. Reduced bone density in individuals with severe hemophilia B. Int J Rheum Dis 2009; 12 (02) 125-129
  • 10 Mansouritorghabeh H, Rezaieyazdi Z, Badiei Z. Are individuals with severe haemophilia A prone to reduced bone density?. Rheumatol Int 2008; 28 (11) 1079-1083
  • 11 Nair AP, Jijina F, Ghosh K, Madkaikar M, Shrikhande M, Nema M. Osteoporosis in young haemophiliacs from western India. Am J Hematol 2007; 82 (06) 453-457
  • 12 Wells AJ, McLaughlin P, Simmonds JV. et al. A case-control study assessing bone mineral density in severe haemophilia A in the UK. Haemophilia 2015; 21 (01) 109-115
  • 13 Iorio A, Fabbriciani G, Marcucci M, Brozzetti M, Filipponi P. Bone mineral density in haemophilia patients. A meta-analysis. Thromb Haemost 2010; 103 (03) 596-603
  • 14 Paschou SA, Anagnostis P, Karras S. et al. Bone mineral density in men and children with haemophilia A and B: a systematic review and meta-analysis. Osteoporos Int 2014; 25 (10) 2399-2407
  • 15 Anagnostis P, Vakalopoulou S, Slavakis A. et al. Reduced bone mineral density in patients with haemophilia A and B in Northern Greece. Thromb Haemost 2012; 107 (03) 545-551
  • 16 Kempton CL, Antun A, Antoniucci DM. et al. Bone density in haemophilia: a single institutional cross-sectional study. Haemophilia 2014; 20 (01) 121-128
  • 17 Looker AC, Borrud LG, Dawson-Hughes B, Shepherd JA, Wright NC. Osteoporosis or low bone mass at the femur neck or lumbar spine in older adults: United States, 2005-2008. NCHS Data Brief 2012; 93 (93) 1-8
  • 18 Barnes C, Wong P, Egan B. et al. Reduced bone density among children with severe hemophilia. Pediatrics 2004; 114 (02) e177-e181
  • 19 Tlacuilo-Parra A, Morales-Zambrano R, Tostado-Rabago N, Esparza-Flores MA, Lopez-Guido B, Orozco-Alcala J. Inactivity is a risk factor for low bone mineral density among haemophilic children. Br J Haematol 2008; 140 (05) 562-567
  • 20 Kempton CL, Antoniucci DM, Rodriguez-Merchan EC. Bone health in persons with haemophilia. Haemophilia 2015; 21 (05) 568-577
  • 21 Black DM, Rosen CJ. Clinical practice. Postmenopausal osteoporosis. N Engl J Med 2016; 374 (03) 254-262
  • 22 Gay ND, Lee SC, Liel MS, Sochacki P, Recht M, Taylor JA. Increased fracture rates in people with haemophilia: a 10-year single institution retrospective analysis. Br J Haematol 2015; 170 (04) 584-586
  • 23 Lee A, Boyd SK, Kline G, Poon MC. Premature changes in trabecular and cortical microarchitecture result in decreased bone strength in hemophilia. Blood 2015; 125 (13) 2160-2163
  • 24 Mauser-Bunschoten EP, Fransen Van De Putte DE, Schutgens RE. Co-morbidity in the ageing haemophilia patient: the down side of increased life expectancy. Haemophilia 2009; 15 (04) 853-863
  • 25 Flaherty LM, Josephson NC. Screening for fall risk in patients with haemophilia. Haemophilia 2013; 19 (03) e103-e109
  • 26 Khawaji M, Akesson K, Berntorp E. Long-term prophylaxis in severe haemophilia seems to preserve bone mineral density. Haemophilia 2009; 15 (01) 261-266
  • 27 Sun J, Hua B, Livingston EW. et al. Abnormal joint and bone wound healing in hemophilia mice is improved by extending factor IX activity after hemarthrosis. Blood 2017; 129 (15) 2161-2171
  • 28 Mannucci PM, Mancuso ME, Santagostino E, Franchini M. Innovative pharmacological therapies for the hemophilias not based on deficient factor replacement. Semin Thromb Hemost 2016; 42 (05) 526-532
  • 29 Muczynski V, Christophe OD, Denis CV, Lenting PJ. Emerging therapeutic strategies in the treatment of hemophilia A. Semin Thromb Hemost 2017; 43 (06) 581-590
  • 30 Mahlangu J, Oldenburg J, Paz-Priel I. et al. Emicizumab prophylaxis in patients who have hemophilia A without inhibitors. N Engl J Med 2018; 379 (09) 811-822
  • 31 Liel MS, Greenberg DL, Recht M, Vanek C, Klein RF, Taylor JA. Decreased bone density and bone strength in a mouse model of severe factor VIII deficiency. Br J Haematol 2012; 158 (01) 140-143
  • 32 Recht M, Liel MS, Turner RT, Klein RF, Taylor JA. The bone disease associated with factor VIII deficiency in mice is secondary to increased bone resorption. Haemophilia 2013; 19 (06) 908-912
  • 33 Rodriguez-Merchan EC, Valentino LA. Increased bone resorption in hemophilia. Blood Rev 2019; 33: 6-10
  • 34 Iwaniec UT, Wronski TJ, Turner RT. Histological analysis of bone. Methods Mol Biol 2008; 447: 325-341
  • 35 Weitzmann MN, Roser-Page S, Vikulina T. et al. Reduced bone formation in males and increased bone resorption in females drive bone loss in hemophilia A mice. Blood Adv 2019; 3 (03) 288-300
  • 36 Anagnostis P, Vakalopoulou S, Christoulas D. et al. The role of sclerostin/dickkopf-1 and receptor activator of nuclear factor kB ligand/osteoprotegerin signalling pathways in the development of osteoporosis in patients with haemophilia A and B: a cross-sectional study. Haemophilia 2018; 24 (02) 316-322
  • 37 Baud'huin M, Duplomb L, Téletchéa S. et al. Factor VIII–von Willebrand factor complex inhibits osteoclastogenesis and controls cell survival. J Biol Chem 2009; 284 (46) 31704-31713
  • 38 Sigl V, Penninger JM. RANKL/RANK - from bone physiology to breast cancer. Cytokine Growth Factor Rev 2014; 25 (02) 205-214
  • 39 Dolan G, Benson G, Duffy A. et al. Haemophilia B: where are we now and what does the future hold?. Blood Rev 2018; 32 (01) 52-60
  • 40 Recht M, Carly P, Larson E, Manco-Johnson MJ, Taylor JA. Biomarkers of bone disease in subjects with Hemophilia. Blood 2013; 122 (21) 1113-1113
  • 41 Taves S, Sun J, Livingston EW. et al. Hemophilia A and B mice, but not VWF−/−mice, display bone defects in congenital development and remodeling after injury. Sci Rep 2019; 9 (01) 14428
  • 42 Dargaud Y, Béguin S, Lienhart A. et al. Evaluation of thrombin generating capacity in plasma from patients with haemophilia A and B. Thromb Haemost 2005; 93 (03) 475-480
  • 43 Posma JJ, Posthuma JJ, Spronk HM. Coagulation and non-coagulation effects of thrombin. J Thromb Haemost 2016; 14 (10) 1908-1916
  • 44 Coughlin SR. How the protease thrombin talks to cells. Proc Natl Acad Sci U S A 1999; 96 (20) 11023-11027
  • 45 Aronovich A, Nur Y, Shezen E. et al. A novel role for factor VIII and thrombin/PAR1 in regulating hematopoiesis and its interplay with the bone structure. Blood 2013; 122 (15) 2562-2571
  • 46 Abraham LA, MacKie EJ. Modulation of osteoblast-like cell behavior by activation of protease-activated receptor-1. J Bone Miner Res 1999; 14 (08) 1320-1329
  • 47 Pagel CN, de Niese MR, Abraham LA. et al. Inhibition of osteoblast apoptosis by thrombin. Bone 2003; 33 (04) 733-743
  • 48 Tatakis DN, Dolce C, Dziak R. Thrombin's effects on osteoblastic cells. I. Cytosolic calcium and phosphoinositides. Biochem Biophys Res Commun 1989; 164 (01) 119-127
  • 49 Tatakis DN, Dolce C, Dziak R, Fenton II JW. Thrombin effects on osteoblastic cells. II. Structure-function relationships. Biochem Biophys Res Commun 1991; 174 (01) 181-188
  • 50 Song SJ, Pagel CN, Pike RN, Mackie EJ. Studies on the receptors mediating responses of osteoblasts to thrombin. Int J Biochem Cell Biol 2005; 37 (01) 206-213
  • 51 Song SJ, Pagel CN, Campbell TM, Pike RN, Mackie EJ. The role of protease-activated receptor-1 in bone healing. Am J Pathol 2005; 166 (03) 857-868
  • 52 Rovai ES, Ambrósio LMB, de França BN. et al. Protease-activated receptor type 1 activation enhances osteogenic activity in human periodontal ligament stem cells. Stem Cells Int 2019; 2019: 6857386
  • 53 Karp JM, Tanaka TS, Zohar R. et al. Thrombin mediated migration of osteogenic cells. Bone 2005; 37 (03) 337-348
  • 54 Pagel CN, Song SJ, Loh LH. et al. Thrombin-stimulated growth factor and cytokine expression in osteoblasts is mediated by protease-activated receptor-1 and prostanoids. Bone 2009; 44 (05) 813-821
  • 55 Maeda Y, Sekiguchi F, Yamanaka R. et al. Mechanisms for proteinase-activated receptor 1-triggered prostaglandin E2 generation in mouse osteoblastic MC3T3-E1 cells. Biol Chem 2015; 396 (02) 153-162
  • 56 Myers LK, Bhattacharya SD, Herring PA. et al. The isozyme-specific effects of cyclooxygenase-deficiency on bone in mice. Bone 2006; 39 (05) 1048-1052
  • 57 Minamizaki T, Yoshiko Y, Kozai K, Aubin JE, Maeda N. EP2 and EP4 receptors differentially mediate MAPK pathways underlying anabolic actions of prostaglandin E2 on bone formation in rat calvaria cell cultures. Bone 2009; 44 (06) 1177-1185
  • 58 Poli V, Balena R, Fattori E. et al. Interleukin-6 deficient mice are protected from bone loss caused by estrogen depletion. EMBO J 1994; 13 (05) 1189-1196
  • 59 Sato N, Ichikawa J, Wako M. et al. Thrombin induced by the extrinsic pathway and PAR-1 regulated inflammation at the site of fracture repair. Bone 2016; 83: 23-34
  • 60 Li Y, Bäckesjö C-M, Haldosén L-A, Lindgren U. IL-6 receptor expression and IL-6 effects change during osteoblast differentiation. Cytokine 2008; 43 (02) 165-173
  • 61 Tudpor K, van der Eerden BC, Jongwattanapisan P. et al. Thrombin receptor deficiency leads to a high bone mass phenotype by decreasing the RANKL/OPG ratio. Bone 2015; 72: 14-22
  • 62 Wojtukiewicz MZ, Hempel D, Sierko E, Tucker SC, Honn KV. Protease-activated receptors (PARs)--biology and role in cancer invasion and metastasis. Cancer Metastasis Rev 2015; 34 (04) 775-796
  • 63 Shpacovitch V, Feld M, Bunnett NW, Steinhoff M. Protease-activated receptors: novel PARtners in innate immunity. Trends Immunol 2007; 28 (12) 541-550
  • 64 Walsh MC, Choi Y. Biology of the RANKL–RANK–OPG system in immunity, bone, and beyond. Front Immunol 2014; 5: 511
  • 65 Jastrzebski S, Kalinowski J, Mun S. et al. Protease-activated receptor 1 deletion causes enhanced osteoclastogenesis in response to inflammatory signals through a Notch2-dependent mechanism. J Immunol 2019; 203 (01) 105-116
  • 66 Sivagurunathan S, Pagel CN, Loh LH, Wijeyewickrema LC, Pike RN, Mackie EJ. Thrombin inhibits osteoclast differentiation through a non-proteolytic mechanism. J Mol Endocrinol 2013; 50 (03) 347-359
  • 67 Heuberger DM, Franchini AG, Madon J, Schuepbach RA. Thrombin cleaves and activates the protease-activated receptor 2 dependent on thrombomodulin co-receptor availability. Thromb Res 2019; 177: 91-101
  • 68 Georgy SR, Pagel CN, Ghasem-Zadeh A. et al. Proteinase-activated receptor-2 is required for normal osteoblast and osteoclast differentiation during skeletal growth and repair. Bone 2012; 50 (03) 704-712
  • 69 Smith R, Ransjö M, Tatarczuch L. et al. Activation of protease-activated receptor-2 leads to inhibition of osteoclast differentiation. J Bone Miner Res 2004; 19 (03) 507-516
  • 70 Amiable N, Tat SK, Lajeunesse D. et al. Proteinase-activated receptor (PAR)-2 activation impacts bone resorptive properties of human osteoarthritic subchondral bone osteoblasts. Bone 2009; 44 (06) 1143-1150
  • 71 Georgy SR, Pagel CN, Wong DM. et al. Proteinase-activated receptor-2 (PAR2) and mouse osteoblasts: regulation of cell function and lack of specificity of PAR2-activating peptides. Clin Exp Pharmacol Physiol 2010; 37 (03) 328-336
  • 72 Brummel-Ziedins KE, Branda RF, Butenas S, Mann KG. Discordant fibrin formation in hemophilia. J Thromb Haemost 2009; 7 (05) 825-832
  • 73 Dorgalaleh A, Rashidpanah J. Blood coagulation factor XIII and factor XIII deficiency. Blood Rev 2016; 30 (06) 461-475
  • 74 Schroeder V, Kohler HP. Factor XIII: structure and function. Semin Thromb Hemost 2016; 42 (04) 422-428
  • 75 Al-Jallad HF, Nakano Y, Chen JL, McMillan E, Lefebvre C, Kaartinen MT. Transglutaminase activity regulates osteoblast differentiation and matrix mineralization in MC3T3-E1 osteoblast cultures. Matrix Biol 2006; 25 (03) 135-148
  • 76 Cui C, Wang S, Myneni VD, Hitomi K, Kaartinen MT. Transglutaminase activity arising from factor XIIIA is required for stabilization and conversion of plasma fibronectin into matrix in osteoblast cultures. Bone 2014; 59: 127-138
  • 77 Piercy-Kotb SA, Mousa A, Al-Jallad HF. et al. Factor XIIIA transglutaminase expression and secretion by osteoblasts is regulated by extracellular matrix collagen and the MAP kinase signaling pathway. J Cell Physiol 2012; 227 (07) 2936-2946
  • 78 Al-Jallad HF, Myneni VD, Piercy-Kotb SA. et al. Plasma membrane factor XIIIA transglutaminase activity regulates osteoblast matrix secretion and deposition by affecting microtubule dynamics. PLoS One 2011; 6 (01) e15893
  • 79 Beazley KE, Deasey S, Lima F, Nurminskaya MV. Transglutaminase 2-mediated activation of β-catenin signaling has a critical role in warfarin-induced vascular calcification. Arterioscler Thromb Vasc Biol 2012; 32 (01) 123-130
  • 80 Cordell PA, Newell LM, Standeven KF. et al. Normal bone deposition occurs in mice deficient in factor XIII-A and transglutaminase 2. Matrix Biol 2015; 43: 85-96
  • 81 Mousa A, Cui C, Song A. et al. Transglutaminases factor XIII-A and TG2 regulate resorption, adipogenesis and plasma fibronectin homeostasis in bone and bone marrow. Cell Death Differ 2017; 24 (05) 844-854
  • 82 Deasey S, Grichenko O, Du S, Nurminskaya M. Characterization of the transglutaminase gene family in zebrafish and in vivo analysis of transglutaminase-dependent bone mineralization. Amino Acids 2012; 42 (2-3): 1065-1075
  • 83 Tarantino U, Oliva F, Taurisano G. et al. FXIIIA and TGF-β over-expression produces normal musculo-skeletal phenotype in TG2-/- mice. Amino Acids 2009; 36 (04) 679-684
  • 84 Kim W-S, Kim H, Jeong EM. et al. Transglutaminase 2 regulates osteoclast differentiation via a Blimp1-dependent pathway. Sci Rep 2017; 7 (01) 10626
  • 85 Raghu H, Cruz C, Rewerts CL. et al. Transglutaminase factor XIII promotes arthritis through mechanisms linked to inflammation and bone erosion. Blood 2015; 125 (03) 427-437
  • 86 Kulkarni R, Soucie JM, Evatt B. Hemophilia Surveillance System Project Investigators. Renal disease among males with haemophilia. Haemophilia 2003; 9 (06) 703-710
  • 87 Soucie JM, Nuss R, Evatt B. et al; The Hemophilia Surveillance System Project Investigators. Mortality among males with hemophilia: relations with source of medical care. Blood 2000; 96 (02) 437-442
  • 88 Esposito P, Rampino T, Gregorini M, Fasoli G, Gamba G, Dal Canton A. Renal diseases in haemophilic patients: pathogenesis and clinical management. Eur J Haematol 2013; 91 (04) 287-294
  • 89 Coppola A, Santoro C, Franchini M. et al. Emerging issues on comprehensive hemophilia care: preventing, identifying, and monitoring age-related comorbidities. Semin Thromb Hemost 2013; 39 (07) 794-802
  • 90 Franchini M, Mannucci PM. Co-morbidities and quality of life in elderly persons with haemophilia. Br J Haematol 2010; 148 (04) 522-533
  • 91 Ranta S, Valta H, Viljakainen H, Mäkitie O, Mäkipernaa A. Hypercalciuria and kidney function in children with haemophilia. Haemophilia 2013; 19 (02) 200-205
  • 92 Sun HL, Yang M, Sait AS, von Drygalski A, Jackson S. Haematuria is not a risk factor of hypertension or renal impairment in patients with haemophilia. Haemophilia 2016; 22 (04) 549-555
  • 93 Slatopolsky E, Martin K, Hruska K. Parathyroid hormone metabolism and its potential as a uremic toxin. Am J Physiol 1980; 239 (01) F1-F12
  • 94 Portillo MR, Rodríguez-Ortiz ME. Secondary hyperparthyroidism: pathogenesis, diagnosis, preventive and therapeutic strategies. Rev Endocr Metab Disord 2017; 18 (01) 79-95
  • 95 Christov M, Pereira R, Wesseling-Perry K. Bone biopsy in renal osteodystrophy: continued insights into a complex disease. Curr Opin Nephrol Hypertens 2013; 22 (02) 210-215
  • 96 Linari S, Montorzi G, Bartolozzi D. et al. Hypovitaminosis D and osteopenia/osteoporosis in a haemophilia population: a study in HCV/HIV or HCV infected patients. Haemophilia 2013; 19 (01) 126-133
  • 97 Eldash HH, Atwa ZT, Saad MA. Vitamin D deficiency and osteoporosis in hemophilic children: an intermingled comorbidity. Blood Coagul Fibrinolysis 2017; 28 (01) 14-18
  • 98 Albayrak C, Albayrak D. Vitamin D levels in children with severe hemophilia A: an underappreciated deficiency. Blood Coagul Fibrinolysis 2015; 26 (03) 285-289
  • 99 von Drygalski A, Kolaitis NA, Bettencourt R. et al. Prevalence and risk factors for hypertension in hemophilia. Hypertension 2013; 62 (01) 209-215
  • 100 Holme PA, Combescure C, Tait RC, Berntorp E, Rauchensteiner S, de Moerloose P. ADVANCE Working Group. Hypertension, haematuria and renal functioning in haemophilia - a cross-sectional study in Europe. Haemophilia 2016; 22 (02) 248-255
  • 101 Barnes RF, Cramer TJ, Sait AS, Kruse-Jarres R, Quon DV, von Drygalski A. The hypertension of hemophilia is not explained by the usual cardiovascular risk factors: results of a cohort study. Int J Hypertens 2016; 2016: 2014201
  • 102 Siboni SM, Mannucci PM, Gringeri A. et al; Italian Association of Haemophilia Centres (AICE). Health status and quality of life of elderly persons with severe hemophilia born before the advent of modern replacement therapy. J Thromb Haemost 2009; 7 (05) 780-786
  • 103 Ilić K, Obradović N, Vujasinović-Stupar N. The relationship among hypertension, antihypertensive medications, and osteoporosis: a narrative review. Calcif Tissue Int 2013; 92 (03) 217-227
  • 104 Yang S, Nguyen ND, Center JR, Eisman JA, Nguyen TV. Association between hypertension and fragility fracture: a longitudinal study. Osteoporos Int 2014; 25 (01) 97-103
  • 105 Tsuda K, Nishio I, Masuyama Y. Bone mineral density in women with essential hypertension. Am J Hypertens 2001; 14 (7, Pt 1): 704-707
  • 106 Wright GL, DeMoss D. Evidence for dramatically increased bone turnover in spontaneously hypertensive rats. Metabolism 2000; 49 (09) 1130-1133
  • 107 Tiyasatkulkovit W, Promruk W, Rojviriya C. et al. Impairment of bone microstructure and upregulation of osteoclastogenic markers in spontaneously hypertensive rats. Sci Rep 2019; 9 (01) 12293
  • 108 Melchiorre D, Linari S, Manetti M. et al. Clinical, instrumental, serological and histological findings suggest that hemophilia B may be less severe than hemophilia A. Haematologica 2016; 101 (02) 219-225
  • 109 Narkbunnam N, Sun J, Hu G. et al. IL-6 receptor antagonist as adjunctive therapy with clotting factor replacement to protect against bleeding-induced arthropathy in hemophilia. J Thromb Haemost 2013; 11 (05) 881-893
  • 110 Knowles LM, Kagiri D, Bernard M, Schwarz EC, Eichler H, Pilch J. Macrophage polarization is deregulated in haemophilia. Thromb Haemost 2019; 119 (02) 234-245
  • 111 Zhang H, Huang Y, Wang S. et al. Myeloid-derived suppressor cells contribute to bone erosion in collagen-induced arthritis by differentiating to osteoclasts. J Autoimmun 2015; 65: 82-89
  • 112 Kobayashi K, Takahashi N, Jimi E. et al. Tumor necrosis factor α stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. J Exp Med 2000; 191 (02) 275-286
  • 113 Horwood NJ. Macrophage polarization and bone formation: a review. Clin Rev Allergy Immunol 2016; 51 (01) 79-86
  • 114 Schlundt C, El Khassawna T, Serra A. et al. Macrophages in bone fracture healing: their essential role in endochondral ossification. Bone 2018; 106: 78-89
  • 115 Wu X, Xu W, Feng X. et al. TNF-a mediated inflammatory macrophage polarization contributes to the pathogenesis of steroid-induced osteonecrosis in mice. Int J Immunopathol Pharmacol 2015; 28 (03) 351-361