CC BY 4.0 · Rev Bras Ginecol Obstet 2021; 43(01): 020-027
DOI: 10.1055/s-0040-1719146
Original Article
Obstetrics/High Risk Pregnancy

Agreement Analysis between Sonographic Estimates and Birth Weight, by the WHO and Intergrowth-21st Tables, in Newborns of Diabetic Mothers

Análise de concordância entre estimativas ultrassonográficas e peso ao nascer, pelas tabelas da OMS e Intergrowth-21st, em recém-nascidos de mães diabéticas
1   Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
,
1   Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
,
2   Universidade Metodista de São Paulo, São Bernardo do Campo, São Paulo, SP, Brazil
,
1   Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
,
1   Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
,
1   Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
› Author Affiliations

Abstract

Objective To analyze the agreement, in relation to the 90th percentile, of ultrasound measurements of abdominal circumference (AC) and estimated fetal weight (EFW), between the World Health Organization (WHO) and the International Fetal and Newborn Growth Consortium for the 21st Century (intergrowth-21st) tables, as well as regarding birth weight in fetuses/newborns of diabetic mothers.

Methods Retrospective study with data from medical records of 171 diabetic pregnant women, single pregnancies, followed between January 2017 and June 2018. Abdominal circumference and EFW data at admission (from 22 weeks) and predelivery (up to 3 weeks) were analyzed. These measures were classified in relation to the 90th percentile. The Kappa coefficient was used to analyze the agreement of these ultrasound variables between the WHO and intergrowth-21st tables, as well as, by reference table, these measurements and birth weight.

Results The WHO study reported 21.6% large-for-gestational-age (LGA) newborns while the intergrowth-21st reported 32.2%. Both tables had strong concordances in the assessment of initial AC, final AC, and initial EFW (Kappa = 0.66, 0.72 and 0.63, respectively) and almost perfect concordance in relation to final EFW (Kappa = 0.91). Regarding birth weight, the best concordances were found for initial AC (WHO: Kappa = 0.35; intergrowth-21st: Kappa = 0.42) and with the final EFW (WHO: Kappa = 0.33; intergrowth- 21st: Kappa = 0.35).

Conclusion The initial AC and final EFW were the parameters of best agreement regarding birth weight classification. The WHO and intergrowth-21st tables showed high agreement in the classification of ultrasound measurements in relation to the 90th percentile. Studies are needed to confirm whether any of these tables are superior in predicting short- and long-term negative outcomes in the LGA group.

Resumo

Objetivo Analisar a concordância, em relação ao percentil 90, das medidas ultrassonográficas da circunferência abdominal (CA) e peso fetal estimado (PFE), entre as tabelas da Organização Mundial de Saúde (OMS) e do International Fetal and Newborn Growth Consortium for the 21st Century integrowth-21st, bem como em relação ao peso ao nascer em fetos/recém-nascidos de mães diabéticas.

Métodos Estudo retrospectivo com dados de prontuários de 171 gestantes diabéticas, com gestações únicas, seguidas entre Janeiro de 2017 e Junho de 2018. Foram analisados dados da CA e do PFE na admissão (a partir de 22 semanas) e no pré-parto (até 3 semanas). Essas medidas foram classificadas em relação ao percentil 90. O coeficiente Kappa foi utilizado para analisar a concordância entre as tabelas da OMS e Intergrowth-21st, assim como, por tabela de referência, entre as medidas e o peso ao nascer.

Resultados O estudo da OMS relatou 21,6% dos recém nascidos grandes para a idade gestacional (GIG) enquanto que o estudo do intergrowth-21st relatou 32,2%. Ambas as tabelas tiveram fortes concordâncias na avaliação da CA inicial e final e PFE inicial (Kappa = 0,66, 0,72 e 0,63, respectivamente) e concordância quase perfeita em relação ao PFE final (Kappa = 0,91). Em relação ao peso ao nascer, as melhores concordâncias foram encontradas para a CA inicial (OMS: Kappa = 0,35; intergrowth-21st: Kappa = 0,42) e com o PFE final (OMS: Kappa = 0,33; intergrowth-21st: Kappa = 0,35).

Conclusão A CA inicial e o PFE final foram os parâmetros de melhor concordância em relação à classificação do peso ao nascer. As tabelas da OMS e intergrowth-21st mostraram alta concordância na classificação das medidas ultrassonográficas em relação ao percentil 90. Estudos são necessários para confirmar se alguma dessas tabelas é superior na previsão de resultados negativos a curto e longo prazo no grupo GIG.

Contributions

Souza M. V. R. contributed by collecting data and writing the first draft; Cortez P. A. contributed by performing the statistical analysis and writing the first draft; Fróes L. P. and Rajão K. M. A. B. had the original idea for the present study, supervised the data collecton and reviewed the first draft; Aguiar R. A. L. and Lauria M. W. reviewed the first draft and the final version to be published.




Publication History

Received: 25 November 2019

Accepted: 17 September 2020

Article published online:
29 January 2021

© 2021. Federação Brasileira de Ginecologia e Obstetrícia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

 
  • References

  • 1 Mañé L, Flores-Le Roux JA, Benaiges D, Chillarón JJ, Prados M, Pedro-Botet P. Impact of overt diabetes diagnosed in pregnancy in a multi-ethnic cohort in Spain. Gynecol Endocrinol 2019; 35 (04) 332-336
  • 2 Organização Pan-Americana da Saúde, Ministério da Saúde, Federação Brasileira das Associações de Ginecologia e Obstetrícia, Sociedade Brasileira de Diabetes. Rastreamento e diagnóstico de diabetes mellitus gestacional no Brasil [Internet]. Brasília (DF): OPAS; 2017. [cited 2019 Sep 1]. Available from: https://www.diabetes.org.br/profissionais/images/pdf/diabetes-gestacional-relatorio.pdf
  • 3 Ministério da Saúde, Secretaria de Vigilância em Saúde, Departamento de Análise em Saúde e Vigilândia de Doenças não Transmissíveis. Vigitel Brasil 2018: vigilância de fatores de risco e proteção para doenças crônicas por inquérito telefônico: estimativas sobre frequência e distribuição sociodemográfica de fatores de risco e proteção para doenças crônicas nas capitais dos 26 estados brasileiros e no Distrito Federal em 2018 [Internet]. Brasília (DF): Editora do Ministério da Saúde; 2019 [cited 2019 Sep 1]. Available from: https://portalarquivos2.saude.gov.br/images/pdf/2019/julho/25/vigitel-brasil-2018.pdf
  • 4 International Diabetes Federation. IDF Diabetes Atlas. 9 th ed.. Brussels: IDF; 2019
  • 5 Hod M, Kapur A, Sacks DA, Hadar E, Agarwal M, Di Renzo GC. The International Federation of Gynecology and Obstetrics (FIGO) initiative on gestational diabetes mellitus: a pragmatic guide for diagnosis, management, and care. Int J Gynaecol Obstet 2015; 131 (Suppl. 03) S173-S211
  • 6 Branchtein L, Schmidt MI, Matos MC, Yamashita T, Pousada JM, Duncan BB. Brazilian Gestational Diabetes Study Group. Short stature and gestational diabetes in Brazil. Diabetologia 2000; 43 (07) 848-851
  • 7 Metzger BE, Gabbe SG, Persson B, Buchanan TA, Catalano PA, Damm P. et al. International Association of Diabetes and Pregnancy Study Groups Consensus Panel. International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes Care 2010; 33 (03) 676-682
  • 8 Trujillo J, Vigo A, Reichelt A, Duncan BB, Schmidt MI. Fasting plasma glucose to avoid a full OGTT in the diagnosis of gestational diabetes. Diabetes Res Clin Pract 2014; 105 (03) 322-326
  • 9 Yan J, Yang H, Meng W, Wang Y, Shang L, Cai Z. et al. Abdominal circumference profiles of macrosomic infants born to mothers with or without hyperglycemia in China. J Matern Fetal Neonatal Med 2020; 33 (01) 149-156
  • 10 Trindade TC. Influência do controle glicêmico no potencial de crescimento fetal em pacientes com diabetes mellitus gestacional [dissertação]. São Paulo: Universidade de São Paulo; 2012
  • 11 Rosati P, Arduini M, Giri C, Guariglia L. Ultrasonographic weight estimation in large for gestational age fetuses: a comparison of 17 sonographic formulas and four models algorithms. J Matern Fetal Neonatal Med 2010; 23 (07) 675-680
  • 12 Czarnobay SA, Kroll C, Schultz LF, Malinovski J, Mastroeni SSBS, Mastroeni MF. Predictors of excess birth weight in Brazil: a systematic review. J Pediatr (Rio J) 2019; 95 (02) 128-154
  • 13 Gyurkovits Z, Kálló K, Bakki J, Katona M, Bitó T, Pál A, Orvos H. Neonatal outcome of macrosomic infants: an analysis of a two-year period. Eur J Obstet Gynecol Reprod Biol 2011; 159 (02) 289-292
  • 14 Yu L, Zeng XL, Cheng ML, Yang GY, Wang BI, Xiao ZW. et al. Quantitative assessment of the effect of pre-gestational diabetes and risk of adverse maternal, perinatal and neonatal outcomes. Oncotarget 2017; 8 (37) 61048-61056
  • 15 Di Giovanni I, Marcovecchio ML, Chiavaroli V, de Giorgis T, Chiarelli F, Mohn A. Being born large for gestational age is associated with earlier pubertal take-off and longer growth duration: a longitudinal study. Acta Paediatr 2017; 106 (01) 61-66
  • 16 Kapral N, Miller SE, Scharf RJ, Gurka MJ, DeBoer MD. Associations between birthweight and overweight and obesity in school-age children. Pediatr Obes 2018; 13 (06) 333-341
  • 17 Zhang J, Merialdi M, Platt LD, Kramer MS. Defining normal and abnormal fetal growth: promises and challenges. Am J Obstet Gynecol 2010; 202 (06) 522-528
  • 18 Kiserud T, Piaggio G, Carroli G, Widmer M, Carvalho J, Jensen LN. et al. The World Health Organization fetal growth charts: a multinational longitudinal study of ultrasound biometric measurements and estimated fetal weight. PLoS Med 2017; 14 (01) e1002220
  • 19 Stirnemann J, Villar J, Salomon LJ, Ohuma E, Ruyan P, Altman DG. et al; International Fetal and Newborn Growth Consortium for the 21st Century (INTERGROWTH-21st), Scientific Advisory Committee, Steering Committees, INTERGROWTH-21st, INTERBIO-21st, Executive Committee, In addition for INTERBIO 21st, Project Coordinating Unit, Data Analysis Group, Data Management Group, In addition for INTERBIO 21st, Ultrasound Group, In addition for INTERBIO-21st, Anthropometry Group, In addition for INTERBIO-21st, Laboratory Processing Group, Neonatal Group, Environmental Health Group, Neurodevelopment Group, Participating countries and local investigators, In addition for INTERBIO-21st, In addition for INTERBIO-21st. International estimated fetal weight standards of the INTERGROWTH-21st Project. Ultrasound Obstet Gynecol 2017; 49 (04) 478-486
  • 20 Committee on Obstetric Practice, the American Institute of Ultrasound in Medicine, and the Society for Maternal-Fetal Medicine. Committee Opinion No 700: Methods for Estimating the Due Date. Obstet Gynecol 2017; 129 (05) e150-e154
  • 21 American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2019 . Diabetes Care 2019; 42 (Suppl. 01) S13-S28
  • 22 Ministério da Saúde, Secretaria de Atenção à Saúde, Departamento de Ações Programáticas Estratégicas. Gestação de alto risco: manual técnico. 5a ed.. Brasília (DF): Ministério da Saúde; 2012
  • 23 Hadlock FP, Harrist RB, Carpenter RJ, Deter RL, Park SK. Sonographic estimation of fetal weight. The value of femur length in addition to head and abdomen measurements. Radiology 1984; 150 (02) 535-540
  • 24 Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics 1977; 33 (01) 159-174
  • 25 Barel O, Vaknin Z, Tovbin J, Herman A, Maymon R. Assessment of the accuracy of multiple sonographic fetal weight estimation formulas: a 10-year experience from a single center. J Ultrasound Med 2013; 32 (05) 815-823
  • 26 Zafman KB, Bergh E, Fox NS. Accuracy of sonographic estimated fetal weight in suspected macrosomia: the likelihood of overestimating and underestimating the true birthweight. J Matern Fetal Neonatal Med 2020; 33 (06) 967-972
  • 27 Dude AM, Yee LM. Identifying fetal growth disorders using ultrasonography in women with diabetes. J Ultrasound Med 2018; 37 (05) 1103-1108
  • 28 Dudley NJ. A systematic review of the ultrasound estimation of fetal weight. Ultrasound Obstet Gynecol 2005; 25 (01) 80-89
  • 29 Macaulay S, Munthali RJ, Dunger DB, Norris SA. The effects of gestational diabetes mellitus on fetal growth and neonatal birth measures in an African cohort. Diabet Med 2018; 35 (10) 1425-1433
  • 30 Brand JS, West J, Tuffnell D, Bird PK, Wright J, Tilling K, Lawlor DA. Gestational diabetes and ultrasound-assessed fetal growth in South Asian and White European women: findings from a prospective pregnancy cohort. BMC Med 2018; 16 (01) 203
  • 31 Grantz KL, Hediger ML, Liu D, Buck Louis GM. Fetal growth standards: the NICHD fetal growth study approach in context with INTERGROWTH-21st and the World Health Organization Multicentre Growth Reference Study. Am J Obstet Gynecol 2018; 218 (2S, Suppl) S641-55.e28, 655.e28
  • 32 Park FJ, de Vries B, Hyett JA, Gordon A. Epidemic of large babies highlighted by use of INTERGROWTH21st international standard. Aust N Z J Obstet Gynaecol 2018; 58 (05) 506-513
  • 33 Heude B, Le Guern M, Forhan A, Scherdel P, Kadawathagedara M, Dufourg MN. et al. Are selection criteria for healthy pregnancies responsible for the gap between fetal growth in the French national Elfe birth cohort and the Intergrowth-21st fetal growth standards?. Paediatr Perinat Epidemiol 2019; 33 (01) 47-56
  • 34 Fava GA, Tomba E, Sonino N. Clinimetrics: the science of clinical measurements. Int J Clin Pract 2012; 66 (01) 11-15